/

BIRDS:

THE ELEMENTS

OR N I TH O L O G Y.

BY
ST. GEORGE MIVART, F.R.S

WITH 174 ILLUSTRATIONS, WHEREOF 140 are ORIGINAL DRAWINGS.

$$
145-983
$$

LONDON:
R. H. PORTER, 18 PRINCES STREET, CAVENDISH SQUARE, AND DULAU \& CO., SOHO SQUARE, W.

PRINTED BY TAYLOR AND FRANCIS, RED LION COURT, FLEET STREET.

TO

$$
M_{Y} \mathrm{~W}_{\mathrm{IfE}},
$$

WHOSE LOVE OF BIRDS FIRST LED ME TO THE STUDY OF

Ornitrolony,

I DEDICATE THIS BOOK.

Hurstoote, May 1892.

PREFACE.

This small volume is put forward in the hope of supplying a want which its Author has himself felt keenly. It is intended to supply, in a small compass, a general view of the Class of Birds; together with such a knowledge of their structure, activities, geological and geographical relations, and classification as may fit the student to enter upon a serious study of Ornithology.
The Author desires to express his great obligation to Dr. R. Bowdler Sharpe, F.L.S., F.Z.S., who has not only given constant and most valuable aid, but has most kindly read through the whole of the proofs. Thanks are also due to Dr. P. L. Sclater, F.R.S., Secretary to the Zoological Society of London, Mr. Osbert Salvin, F.R.S., Mr. H. Seebohm, F.Z.S., Mr. Howard Saunders, F.L.S., Mr. E. Hargitt, R.I., F.Z.S., and Mr. Scott B. Wilson, F.Z.S., for supplying various points of incidental information.

C0NTENTS.

Dedication $\mathrm{P}_{\mathrm{ag}} \mathrm{iii}$
Preface v
CHAPIER I.
Introducilon 1
CHAP'PER LI.
The External Struouture of Birds 134
CHAPIER III.
'Ihe Interyal Skeheton 167
CHAPTER IV.
The other Systems of Organs, ind the Develop- ment and Migration of Birds 202
CHAP'LER V.
The Geological and Geouraphicil Rebations of Birds 235
CHAPTER VI.
The Classification of Birds 251
Alphabetical Index 307

BIRDS:

THE ELEMENTS

OF

ORNITHOLOGY.

CHAPTER I.

Introduction.

0RNITHOLOGY is a most popular branch of Natural History. That it should be so is a necessary result of the exceptional beauty of Birds, which by their viracions movements force themselves on our notice and lend animation to every landscape. No other creatures, save certain insects, can rival them in brilliancy of colour, and none can charm our ears with such melody or startle them by the utterance of articulate speech. Their intelligence is considerable : some can be taught to perform curious tricks, and others are easily domesticated. Their emotional nature is also attractive; the conjugal affec tion of not a few birds is remarkable, while the devotion they show to their offspring and the marvellous skill with which many of them prepare a shelter for their brood are known to everyone.

Birds together constitute a gronp which is ranked as a "Class," and which may be compared and contrasted with the Class of Beasts (or Ilammals), the Class of Reptiles, and the Class of Fishes, all which Classes agree together in being distinguished as back-boned, or Vertebrate, animals.

The Class of Birds stands out in startling contrast to all the other three Classes just referred to, and is one of the most definite, uniform, and easily defined groups (of its own rank) in the whole Animal Kingdom *.

All Birds have feathers, and no such thing as a feather is possessed br any creature which is not a Bird. This character alone, therefore, suffices to define the whole Class.

The uniformity of their structure is very remarkable. While some beasts, some reptiles, and some fishes have but a pair of limbs, and other reptiles and fishes have none, all Birds have two pairs-a pair of wings and a pair of legs. Most beasts and reptiles have a long tail, while some are without any; but every existing Bird has a tail which, feathers apart, is short t. Some heasts, some reptiles, and some fishes are edeutulous, while most have teeth; but no living Bird possesses such structures. Some beasts, some reptiles, and some fishes are eyeless ; but every Bird has a pair of eyes.
lirds are eminently aërial creatures, and there are but very few which have no power of flight; while none of the living members of the other Classes can truly fly except Bats; though some ancient reptiles (Pterodactrles) possessed a similar power. Although many birds are more or less aquatic in their habits, none are so completely so as either the Whales and Porpoises amongst beasts, or certain reptiles.

Birds differ much in size, ar, e. \%., the Ostrich and the Wren; but the differences are not so great as those which exist between different beasts, different reptiles, and different fishes.

No Bird, however cold a climate it may inhabit, ever falls: into prolonged winter sleep (hibernates) as do some mammals (6 .!., the Dormouse) and a mumber of reptiles. Many Birds aroid undue cold or heat by a periodical change of place, or "migration," which is fixed and definite. Thus some Birds come to us in winter from the North, and more in summer from the South.

Different kinds of Birds inhabit different regions of the earthis surface, and their distribution is necessarily restricted by the supply of suitable food and other conditions needful for

[^0]their existence. Birds have also definite relations to past time -relations which are revealed to us by their fossil remains preserved in different strata of the earth's crust.

The more numerous any set of objects may be, the more necessary it is to arrange them in groups-i. e., to clussify them. Without this it is impossible for us to study and comprehend such objects. As Birds are very numerous in their kinds, their classification is especially necessary, while the rerr uniformity of their structure makes that process especially difficult. Nevertheless, the study of their classification is a very interesting one, on account of their structure, their powers, the geographical relations of different kinds of Birds and their relations with the past history of our planet.

Thus the science of Ornithology deals with the structure, functions, external relations, and classification of Birds. But in order that the student may be able to study these subjects profitably, he should possess some preliminary acquaintance with a considerable number of different kinds of Birds. He will again and agaiu meet with the names of different kinds, and of groups of kinds, of Birds ; and no adrance in Ornithological knowledge can be made by a reader who, wheu he meets with any such name, is not prorided with a corresponding mental inage sufficiently distinct to enable him to group his freshly acquired knowledge around it.

Our first task, therefore, shall be to place before the student the names and figures of such a number of Birds of different linds as may enable him to acquire a certain preliminary grasp of his subject-the subject-matter of his subsequent study. It will be well, however, that the reader, after having perused this introduction, should repair to some Zoological Garden or Museum, and there acquaint himself more fully with the external aspect of the Birds here referred to. Failing this, the next best thing he can do is to carefully examine all the good pictures of Birds he can get access to.

It is always well to adrance from the better known to the less known or monnown. We will therefore begin with that Bird which must be most familiar to al our readers-the Common Fowl.

All the various breeds of this animal have been derived from one or more wild species-Jungle-fowls-which hare their home in India and the Indian Archipelago, but were introduced into Europe in very ancient times.

One species, named Gullus bunkiva *, has a very wide rangenamely, from the Himalaya down to the Philippine Islands and Timor. Another species is peculiar to Ceylon, and two or three more are found in different parts of the wide region inhabited by Gallus bankiva. They all resemble, more or less nearly, the Game-fowl, and have very similar voices and habits.

Hardly less known to most of us than the Fowl is the Pheasant (Phasianus colchicus), which also is of Asiatic origin, though close to the frontiers of Europe-namely, the basin of the Caspian, the valleys of the Caucasus and Asia Minor. That singular spot-the island of Corsica-which has so many species of flowering plants absolutely peculiar to it, is also claimed as a natural home of the Pbeasant, which, as an introduced resident, ranges all over Europe (even to our Outer Hebrides), except the most northern parts of the Continent and, strange as it may appear, the Iberian peninsula.

In Central and Nouthern Asia there are some five-and-thirty species of Pheasant, while none are found wild in any other part of the world. Perhaps the most beautiful of all is Lady Amherst's Pheasant (Thermalca amherstice), which has its plumage shaped like that of the Gold Pheasant, but is far more delicate and refined in its coloration ; while the Chinese Reeves's Pheasant (Phasianus revesii) has by far the longest tail.

The wonderful Argus Pheasant (Argus giganteus) would be remarkable also for its length of tail were not this peculiarity overshadowed by its enormous wings, the feathers of which are decorated with a multitude of heautiful eve-liko spots. Its wiugs are rather for parade than use, as the bird can only fly with them for short distances with a heary flight. It frequents the thickest jungles, and is, therefore, but very rarely seen, even by the natives of the Indo-Malayan region it inhabits.

The last-named region and the Himalayas produce the beautiful Peacock Pheasants (e. g., Polyplectron biculcaratum), which have not only the wings, but also the back and tail, covered with lovely eye-like spots. The true Peacocks-of which there

* In Zoolngy (and therefore in that branch of it with which we are con-cerned-viz., (m mithology) each lind of creature has a name formed of two words. The first (e.g. (iellus) indicates to which smaller group or "genus" the ereature belongs. The second word (e.g. buntived denotes which sperino it is of such genus. This is like the Christian and surname of a man, only with the surname standing first.
are two species (Pavo cristatus and P avo javanicus)—are also exclusively inhabitants of Iudia and its Archipelago, frequenting forests and jungles, especially in hilly and mountainous districts. Large flocks of these Birds, which may be seen in India, constitute one of the most gorgeous natural objects that zoologically rich region affords.

Allied to the Pheasants are certain singular Birds, the Trago-pans-called Horned Tragopans because a curious fleshy process, or "horn," is placed on either side of the head behind the eye (fig. 2). It is of different colours in different species, and can be distended and erected, while there is a similarly distensible "wattle " of different colours on the front of the throat.

The Argus Pheasant (Argus giganteus).
These curions Birds have a more northern range than those last before-mentioned. The Tragopans extend from the Himalayas into Southern China.

Thus all the Birds which most closely resemble the Fowl and the Pheasant-all those which have been hitherto noticedare inhabitants of Central or Southern Asia, while not one of them is found in Africa.

But a sufficiently well-known domestic Bird-the Guineafowl (Nemida melec(!nis)-is of Atrican origin; and at least ten other species are to be found in the same Continent (inchuding Madagascar, which has two species), hut nowhere else in the world. The aspect of these creatures is very different from that of the Asiatic Birds we have hitherto called attention to.

Their peculiar roice, which no one can forget who has once heard it, is said sometimes to produce an almost stumning noise when these flocks (and they live in flocks) assemble in hundreds, as the occasionally are said to do. The Crested specties of West Ifrica (… cistute) is a handsome bird.

America has contributed yet another denizen to our farm-

Fig. 2.

The Horned Tragopan (Ceriornis satyra).
rards, which have thas been peopled from no less than three foreign Continents. The discoveries of Columbus and Amerigo Vespueci first made known to the the existence of the Turker. which was introduced into England towards the close of the reign of Henry TIll., and probably gained its English appellation from its haring been brought to England in ships
which traded with the Levant. It is strangely different in aspect from the Guinea-fowls and the Pheasants, though the fleshy process above the beak and that on the throat remind us slightly of the Tragopans, or the Fowls with their combs and wattles.

The Turkey of Central America (Melectrris ocellutu) is one of

Fig. 3.

The Crested Guinea-fowl (Numida cristata).
the most gorgeous of all Birds, from the brilliant metallic lustre of its plumage of blue and green and other tints and colours.

The Common Turkey was once widely distributed over the more Southern region of the United States, and, not loug ago at the least, was plentiful in the valleys of the Mississippi and Missouri. Franklin recommended the adoption of the Bird
as a national symbol of the Republic instead of that hacknered emblem the Eagle.

South and Central America, though ther have no Fowls. Phoasants, (ruinea-fowls, or Turkers, possess between fiftr and sixty large speries of Birds, known as Curassows, of which the (ruited Curasonw (Crax alector) may stand as a trpe. They are plain and sombre in colour compared with the brilliant creatures to which we have before referred. They are also more thoroughly arboreal in their habite, beeins (like so many species which inhalhit that widest of forest-recrions-Brazil) specially modified

Fig. 4.

to live in trees, high up on which ther construct their nests of twigs.

Australia has no birds to show, like those hitherto enumeratend, although its curious mound-huilding Birds, or "Mecrapodes." go he the minnomer of "Brush-turkers,"-no doubt on account of the wattled skin of the hearl and neck which some of them possess. One handsome kind (Leiport ocelluter) has its plumase decorated with eve-like marking-. These ITeqapodes are celehrated for the mounds ther raise to receive their egrgs. The
eges therem denosited are hatched, mot. as with other Birds, by the warmth of the koly of the parmon, but be the heat given out bs decomosing matter which thes ave car-ful to endowe within their mound. This alsence of parental care in hatchims revalts in th.. roune Birds lesing forced at nuce to tabe carr of th-meelres as soou as hatehed. Theremith th-ir demplopment within the rog is sn complet- that ther come forth full-firlyoul, =o that they can tly at oncr. thouch it senens that thay may actually attain a considerable size before thej quit $\mathrm{th}-\mathrm{mound}{ }^{4}$.
F:

The Ocellated Mound-builder (Leipor ocelluta).
R-tumine to our own domain, we mar note that. matively small as are the Briti-h Islands they are neverthemse the exchusire howe of a much ralu-al Birl-th- twhe (imonse I Lampms sutiens). It is one momher of a cents the -apies of whicl cance through tha north-m land of : ath heminplewes, b-ing one if
 mily : it trult infigunue to to. Toved Kiuslom, but it is the one onl- Bind whech is somel har- and won Lere else in the

[^1]whole world. Its giant cousin, the Capercaizie (Tetrao urofullus), ranges from scandinavia and the siberian valley of the Fenesay to the Altai Mountains, the Alps, and the Pyrenees.

A great contrast to the arboreal, polygamous, wild Capercailzie, is that familiar dewizen of our home-fields-the Partridge (Perdix cinerea), which faithfully pairs with its gentle mate for life. For more than a hundred years it has had to sustain an unequal contest with the stronger aud more pugnacious red-legged lind (P. rufu) of South-western Europe,

Fig. 6.

The Californian Quail (Lophortyx culifornicus).
which was introduced in 1770, and has obtained a foothold in the greater part of our Eastern Counties. That miniature Partridge, the (Quail (Coturnier commmis), easily distinguished by its smaller size, very short tail, and pointed wings, is also a ground-bird like the Partridge, though it is well capable of flight, as is proved by the prodigious multitudes which cross the Mediterranean for a winter home in Africa.

Of (Quails there are some twenty kinds, ranging through the Old World south of the Aretic regions. Birds nearly allied
and often spoken of as Quails also exist in the New World, constituting some four-and-forty species, amongst which is the handsome Californian Quail (Lophortye californicus), with its elegant nodding crest.

There are some very small Game Birds called "ITemipodes " or "Bustard Quails," which are very like Quails, though they

$$
\text { Fig. } 7 .
$$

The Black-breasted Hemipode (Turnix taigoor).
can easily be distinguished from the latter by their not haring aur hind toe. They are found from China to Australia, in Iudia, Southern Europe, and in Africa. The Black-breasted Hemipode (Tumix taiyoor) may serve as a type. The species which inhabits Spain (T^{\prime}. sylycaticu) has even strayed as far as England.

Certain Birds known as Sand-grouse are so unlike true

Grouse that their English name is misleading. They constitute the two genera termed Pterocles and Symbutes. The one which is found in Spain (Pterocles arenarius) may be considered the type. These Birds are inhabitants of Asia and Africa, but one species, Pallas's Sand-grouse (S'yrrleptes perarloxus), sometimes

Fig. 8.

Pallas's Sand-grouse (Syrrhaptes paradoxus).
migrates to Europe and into our own country. It first did so in very large numbers in 1sis:), and it seemed as if it would become a truly British Bird-a very interesting fact as bearing upon the general question of the geographical distribution of species. Nevertheless it has now disappeared.

A certain superficial resemblance, at the least, has been recosnized as existing amongst all the Birds which have been as yet herein noticed by us. As the trpe of this assemblage may be taken that form with which we started, the Fowl; and as the generic name of the Fowl is Gallus, this whole assemblage or group of species have been, and still are, very commonly spoken of as Gallinaceous Birds.

Only less familiar than the Common Fowl is the Pigeon, which forms the type of another smaller, though still considerable, group of very attractive Birds, the close resemblance of which to one another must strike the most casual observer. Thes are fruit-eating and grain-eating, monogamous Birds, of which there are about 360 different species. Their geographical hearlquarters are in and near New Guinea. About 120 species are found in the Indian Archipelago, while less than a quarter of that number exist either in the continent of India or Anstralia. Abore $4^{\prime 0}$ species are African, while at least 80 exist in either North or South America.

All the domestic varieties seem to have been derived from the Rock-pigeou (Columbal livia), which is a native of South-eastern Europe.

Fig. 9.

The Rock-pigeon (Culumba livia).
Fig. 10.

The Tooth-billed Pigeon (Didunculus strigirostris).

A rery interesting form, called the Tooth-billed Pigeon (Dirlunculus strimionstris), inhabits the Samoan Islands, where it feeds on plantains. It used to be an entirely, or almost entirely, ground-bird, but is said to have taken to flring up intotrees to aroid cats and other enemies introduced of late years by man into the region it inhabits. Thus it can fly to a certain extent when it needs to do so; but its main interest comsists in the fact that of all existing Birds it is the one which most resembles the extinct Dodo, which could not possibly fly at all.

Not less familiar to us than Fowls and Pigeons are our
Fig. 11.

The Mallard (Anas boscas).
Ducks and Geese. Of these there are very many species, and some are found almost all over the world.

Our Domestic Goose is derived from the Grey Goose (Anser cincreus), the natural range of which extends over Europe and Central Asia. There are some fourteen species of the grenus Anser, and of allied forms there are very many more-some of them being found in one resion or another almost all over the world, save that the true Geese eschew the Tropics. In spite of their webbed feet, the Geese generally, like the Domestic

Goose, are Land Birds-at least during their breeding-season, and they breed on the ground.

The Ducks-for which the Wild Duck or Mallard (Anas boscas) may be taken as a trpe-are all so much alike, that the genera into which their numerous species have been grouped present no characters which make it needful for us to deal with them here. They form another cosmopolitan group of broadbilled web-footed Birds.

Fig. 12.

The Black-necked Swan (Cygnus nigricollis).
The Harlequin Duck, which rarely visits us from the North, is a handsome Bird. But there are many yet handsomer, and the brilliant and artificially-marked Mandarin Duck is especially noticeable.

Of Swans there are only some eleren species, whereof that "Rara wis" of our Latin grammars, the Black Swan, is Australian, while the White Swan with a black neck, from South America, is a remarkably handsome species.

The Mergansers constitute a very small group of Water Birds, markedly different from the before noted web-footed ones,
through their narrow bills margined with tooth-like processes. They are noted as great destroyers of fish. Of them, the Goosander (Mergus merganser) may be taken as a type-a bird dear to the Scandinavian peasant. Mr. Seebohm telis * us that, as the House-martin has found a better shelter for its, nest under the eaves of a roof than in a cliff, so the Goosander immediately avails itself of the wooden boxes which the Fins fasten up in the trees to tempt them. These are made with a trap-door

Fig. 13.

The Goosander (Mergus merganser).
behind "so that the peasant may daily rob the nest, and thus make the too-confiding bird lay a score or more of eggs before the wary mau thinks it prudent to cease his depredations, and allow the Goosander to sit upon the nest for fear of spoiling the next year's harvest."

In a half-domesticated state, on the surface or margins of our ponds, by homely farmsteads or in pleasure-grounds, we often find those small familiar Water-Birds known as "Moor-hens"

* British Birds, vol. iii. p. 626.
(Giallimuta chloropus). We see them sometimes swimming along, with a nodding motion of their heads, or feeding on aquatic insects, larval dragonflies, and others; sometimes lounting for slugs or worms amongst the grass of our meadows, jerking up their tail at every step. Our Moor-hen is the only one found in Europe, but also in Asia, Africa, and America, though not in Australia. There are some fifteen other species of the genus, which is a very cosmopolitan one. The Waterrail (Rallus aquaticus) is one of a group of about fifteen species

Fig. 14.

The Water-rail (Rallus aquaticus).
found in most parts of the world sare Australia and the Arctic regions. It is stili common in the fen-countries, and breeds in the Norfolk Broads. By its webless toes it differs from the Ducks and Geese, but that character increases its resemblance to the Land-rail (fig. 15) or Corn-crake (Crea pratensis), the harsh roice of which (like a pen drawn across the teeth of a comb) may be heard in our corntields and dry meadows. The group to which the generia ('rex and fintlimula alike beloug (that is, the family of the Rails) comprises some 167 species, some or other of which are found all orer the world, save in the

Arctic and Antarctic regions. One of these forms-an aquatic one common in England, and abundant on the Norfolk Broads-

Fig. 16.

The Coot (Fulica atra).
is the Coot (Fulica atra), which resembles the Moor-hen in its habits, and, like that species, resides with us all the year through.

It differs, however, in having its toes bordered with a scalloped membrane, so that it is a sort of half-web-footed Bird. Another Bird with also half-webbed or "lobed" feet is the southAmericau one named Heliornis futica. To such Birds as the Coot and its allies we shall have again to refer *.

Fig. 17.

Tet another very common inhabitant of our lakes and ponds, which also has its toes festooned with membrane, and notable for its soft plumage, is the Dabchick (fig. 18), or Little Grebe (Podiceps minor). But seldom found on land, where it walks badly, and rarely taking the wing, it is a most ready diver, diving with perfect ease when but a week old, and swimming as soou as hatched. It and a few other larger Grebes found in

$$
\text { * See below, p. } 63 .
$$

Fig. 18.

The Little Grebe (I'aliciss miner').

Fig. 19.

The Great Northern Diver (Colymbus glacialis).
the British Isles form part of a family of about thirty speciesa group spread over the world, mainly in the temperate regions of both Hemispheres.
still more aquatic in their habits, and perfect in their diving movements, are the half-dozen or so of Divers, por excellence, whereof our Great Northern Diver (Colymbus ylacintis) may serve as an example. It is a large bird, which breeds in the

Fig. 20.

The Common Guillemot (Uria troile).
north of North America, and risits the coasts of England and Scotland in the winter. The Divers live chiefly in the sea, feeding on moderate-sized fishes, which they eatch while under water. They all inhabit high latitudes.

Another much commoner but very interesting bird is the Common Guillemot (Liva troile). Extremely maritime in its
habits, and also a most ready diver, it lives upon the open sea sare at the breeding-time, when it seeks some rocky cliff, such as the Bass Rock or Flamborough Head. In such places they assemble in rast numbers, and Guillemots are often seen in thousands at their breeding-places. There each hen bird lays but a single large egg, not deposited in any nest, but simply on some ledge or in some fissure of the rocks. Their most variously coloured eggs are in much request as food, and desperate risks are run in obtaining them from the often precipitous localities where they are laid. Young hirds, incapable of flight, are to be found on the sea, though how they get there from their lofty hatching-place has not yet been ascertained.

A small bird-wearly related to the Common (iuillemot-called the Sea-dove or Little Auk (Alle nimpicoms), visits us in winter from spitzbergen. There it breeds in incredible numbers. It is more commonly to be fomd in the Orkuers and shetlands than further south in our Islands.

The Razorbill (Alce tordu) is very like a (ituillemot, save for it: hish, sharp-edged, and hooked bill. It is confined to the North Atlantic Ocean, and such prolongations of that ocean as the British seas. There it catches fish with great dexterity, pursuing them under water in what may be called aquatic floght, as its wings as well as its wobbed feet aid its pursuit. Its principal interest, howerer, consists in the fact that it is the nearest living representative of the Great Auk or Gare-fowl (Alce impennis), which seems to have become extinct abont the year 184t. Some 76 kkins and 9 skeletons, with (is eges and a few bones, preserved in collections, are all the relics we have of this strange Bird. It had absolutely no power of flight, and was as large as a Goose. On land it ran and walked in au upright attitude, but dived and swam under water with extreme celerity and ease. Two hundred and seventy years ago hundreds at a time could be takeu at the coast of Newfoundland: but the last one recorded to have been taken in our Islands was at Waterford Harbour in 1834. Its breedingplaces ranged from the north of Scotland, the Hebrides and Iceland, to Labrador, Newtoundland, and Nova Scotia, aud it was entirely confined to the Northern Hemisphere.

Another strictly aquatic and marine Bird with no powers of flight is now entirel? confined to the Southern Hemisphere. This is the King Penguin (-1ptenorlytes lomgiostris), which may be selected as an example of about a dozen and half of Peuguins
of different kinds. The King Peuguin of the Antarctic OceanKerguelen, the Falkland Islauds, de.-still exists in enormous numbers, passing the greater part of its time in the water, where it swims by means of its wings only, its feet serving but as rudders. On land it stands and walks in an upright position (fig. 22).

$$
\text { Fig. } \because 1 .
$$

The Great Auk (Alca impennis).
A curious and much smaller Bird, called the Puffin (Fratercuta (tretict), or hea-parrot (fig. 6:3), which inhabits rocky districts of our coasts, may serve as the type of some eight other species which have a circumpolar distribution. They lay but a single egg, which ther sometimes deposit in the cleft of a rock, while sometimes they dispute with rabbits the accommodation of their burrows. They are clumsy-looking Birds, which nevertheless have a rapid though not loity flight.

From the rarious extremely aquatic Birds which hare been here noticed, beginning with the Divers, we may now pass to another set of Birds of different structure, which are not less wonderfully agile in their subaqueous movements in pursuit of prey. Of

Fig. 22.

The King Penguin (Aptenodytes longirostris).
these, our English species the Cormorant (Phulucrocorcar curlo) and the Shag (P. !rcoculus) may be taken as types, and some thinty or more other kinds are to be found in different parts of the world, save in the Polar regions and amongst the Pacitic Islands. Ardent and successful fishers, ther, by the help of
their wings and rery well-webbed feet, outswim the fishes they pursue beneath the surface of the water. But skilful as they are, the more marine of our two forms, the Shag, is apt to be drowned by diving through a hole in the ice and not being able to find again its place of entrance, a task successfully performed by the Cormorant, which is habituated to fresh irater. One species of Cormorant has been domesticated by Chinamen, who make use of it to catch fish while secured by a cord and collar.

But the organization of the set of Birds with which tre are now occupied finds its highest expression in the Darters. These are,

The Puflin (Fratercula arctica).
as it were, Cormorants with long neeks, very curionsly jointed, and with straightened and sharpened bills.

Four species of the gemms are distributed orer America, South-eastern Asia, Africa, and Australia. These are none of them Sea Birds. They inhahit swamps and rivers, where they pursue fish with extraordinary agility, spearing them through with their sharp beak before seizing them in the mouth, as may often be seen with the American species (Ilotus antinya, fig. 24) in our Zoological Gardens. A curious bend or seeming lump in the neck is conspicuous, and indicates the spot where the neck-bones are modified in a most remarkable manner, to facilitate the unerring projection of the bill-like a spear-head-against the bodr of the fish the bird desires to transtix.

In the Gamet or Booby, also called the Solan Goose (א゙ulu
besscmat, we meet once more with an Oceanic form. It way serve as the type of a very small group of Marine Birds widely distributed in the Tropics.

The ciannet is a somewhat ungainly Bird, a little smaller. than a Goose, and awkward in its movements on the land. Not only is it a perfect swimmer, but it is also remarkable for its wonderful powers of flight, soaring to great heights

$$
\text { Fig. } 24 .
$$

The Darter (Plotus anhinga).
aud trarersing a hundred miles or more of aërial space in one day. Though not possessed of the powers of diving which Darter's and Divers enjog, the Cannet, large and heary hird though it be, will suddenly descend and plunge directly downwards to catch the fish on which it feeds most greedily. It is very local as to its breeding-places, there being but few such in

Great Britain; amongst them the Bass Rock, Ailsa Craig, and Lundy Island may be mentioned *.

The Cammet, like the Cormorant, has a slightly distensible naked portion of skin at the top of the throat in front, extending to the underside of the bill. This is greatly exaggerated in a Bird which is entirely strange to our own climes, though a common inhabitant of our Zoological Gardens. We refer to

Fig. ${ }^{2}$.

the Pelican (Pelectmes onocrotalus), the unwieldy form and awkward gait of which, as well as its long bill with the great bag of skin beneath it and in front of the throat, must have strongly impressed every one who has seen it. Unwieldy as it is, and very web-footed, it is fond of perching on trees.

It inhabits Africal and the Western and Central parts of Asia

[^2]and South-eastern Europe. Other species of Pelicans are also found in North and South America, and there are about ten in all. Pelicans go in large troops, and though, like the Gannet, no divers, they will, like that bird, sometimes dash down vertically into the water from a great height in pursuit of the fish on which they feed, resting a rery brief time on the surface of the water to swallow their prey, tossing up their bill and distending the pouch beneath it.

> Fig. 26.

The Common Pelican (Pelecanus onocrotalus).
Returning from such exotic creatures as Pelicans and Darters to more familiar forms, when we think of sea Birds, the Gulls of our coasts come naturally before the mind. The Common Cull (Letras cotms) may serve as the type of a large group which is spread orer the whole world, and consists of at least fortyeight kinds, all remarkably similar in form, general coloration,
and mode of life. The common species is very often to be seen on the banks of the Thames, and many of the Gulls, though familiar objects at the sea-side, largely frequent inland waters, feeding on worms, insects, eggs, the nestlings of other Birds, mice, de., as well as fish. Their flight is graceful, and they may often be seen sailing in circles in the breeze, with hardly a perceptible motion of the wing.

The Terus are yet more graceful in flight, but they walk
Fig. 27.

The Common Gull (Larus canus).
with less ease, though they swim admirally. Their more slender, less bulky aspect, straghter bills, narrower wings, and long forked tails serve, with few exceptions, to distingui-h them from the fulls. There are again, some fifty species of this group, some or other of which are to be found nearly all over the crlobe Like the Gulls, they are noisy aud gremarious, and are found on inland lakes as well as the sea-shore, feeding on insects as well as tish. The Arctic Tern (stemumerora, fig. 오) may serve for a type, as it is almost as well known as the so-called ('ommon 'Yern (S. flumitilis). It comes to us in the latter half of April, breeding on islands near the coast.

There are also Robber-gulls, called skuas, and the Great Skua (Stercoractius cutarilhactes) breeds in Iceland, the Faroes, and the

Fig. 28.

Fig. 29.

Head of the American Skimmer (Rhynchops nigra).
Shetland Islands. There are three curious Birds called Skimmers or Scissor-bills-one in Asia, one in Africa, and one in America. The last of these (Rhynchops niypot has been observed

Hying backwards and forwards, with its long wings, fishing close to the surface, with the lower half of the beak ploughing the water. It is the very singular shape of the beak which makes it specially noteworthy.

With the Gulls our minds naturally associate that Oceanic Bird with an ill-omened name, the Storm-petrel (Procillaric pela!ficte, which breeds on Lundy Island and on others off our Western coasts. These birds roam over the Atlantic and are known as "Mother Carey's Chickens." They differ erreatly from the Gulls and Terns in being silent birds. This Petrel

Fig. 30.

The Storm-petrel (Procellaria pelagica).
is a type of a group of more than 100 species distributed throughout the Ocean all over the world, and so pelagic that they only rarely come to land except to breed. They are webfooted birds with hooked bills, long wings, and a short tail, but their most noticeable peculiarity is that their nostrils are prolonged outwards as short tubes. They have wonderful powers of flight and are excellent swimmers, though many of them hardly ever dive. They will often accompany a ship for many days. The various species differ very greatly in size-our type being one of the smallest, not much larger than a Swallow. A rather
distinct form called a Diving Petrel (Pilecanoides urinatrix) is found in Kerguelen Land. The largest of the group is the Albatross (Diomelea ecruluns), a great wandering species, the largest of all Water Birds. Its home is in the Southern Hemisphere, but it has been taken in Europe. Its enormously long wings and its habit of sailing without flapping them for a long period are well known. There are some ten species of Albatross.

Another wandering oceanic creature is the Frigate-bird
Fig. 31.

The Frigate-bird (Tachypetes aquila).
(Tuct, i_{i} "tes "quilte), which has in some respects the aspect of a hird of prey of the Hawk or Eagle kind, with a powerful hooked heak and a lomg, forked tail. It has, howerel, marvellously long wings and reery small feet, and is believed to have the most powrfful flight to be met with in the class of Birds. It soars to areat heights. Frigate-birds are great persecutors of others, pur-ming Torns and (ammets, forcing them to disgorge a fish they mar have captured, and eatehing it as it falls. Ther are oftein called "Men-of-war Birds." They range the ocean in all
warm regions, and, like Petrels and Albatrosses, have little to do with the land. They are inhabitants of the Tropics, as also especially are some creatures constituting another very small

Fig. 32.

The Tropic-bird (Phaëton athereus).
Oceanic group, and linown emphatically as "Tropic-birds." Of these we may name Phueton cethercus as a type. They are powerful, but not graceful fliers, often accompanying
ships in their course, and flying round them at a great height with the velocity and directness of a small steam-engine. Nevertheless, though they depart far from land they do not do so to the extent to which Petrels and the Frigate-bird will go. They are gregarious, and nest together on coasts where rocks

Fig. 33.

The European Flamingo (Phœnicopterus antiquorum).
and bushes are found in proximity. They have much the appearance of Terns, but are shorter and somewhat larger.

We have now noted various Aquatic Birds that are quite strange to England, and which are mostly marine, though some frequent rivers. We will next pass on to consider
certain Birds which are found in the warmer parts of both Hemispheres and which are known as Flamingoes. Many individuals of the species known as Phonicopterus antiquorum are often to be seen on the Guadalquivir River between Seville and the sea. This Bird is generally to be found in our Zoological Gardens, where its extremely long neck

Fig. 34.

The Little Egret (Ardea garzetta),
and its curiously bent beak are sure to arrest the attention of any observant risitor not already familiar with it. They build their nests of mud, and each nest has the appearance of a small mound, about half a yard high, rising out of the shallow water of some marsh. There are eight different kinds of Flamingoes.

This creature naturally suggests to us a number of other D 2

Wading Birds, the great majority of which are strange to the British Isles. But one handsome long-legged Bird, which wades in ponds and rivers to eatch fish with its long sharp beak, is a sufficiently familiar object to many Englishmen. We refer to the Heron (Ardec cinerea), which may serve as a type of many
-Fig. 35.

The Common Bittern (Botaurus stellaris).
closely similar Birds, found all over the world save its coldest regions. The Heron is a rery attractive object, as it may be seen fishing in some pond or perched on the branch of a tree overhanging the water, or flying, somewhat slowly, flapping its broad wings, with head brought back, resting on its shoulders, and its long legs trailing behind it. It is a great frequenter of
our coasts, at least in our Northern Counties, searching the pools left at low water for crabs, shrimps, or other small marine creatures.

Amongst foreign allied forms may be mentioned the Nightheron, which occasionally visits this country ; as also, though very rarely, does the beautiful Little Egret (Ardec garzetta) and the great White Egret, which breeds regularly in Southern

Fig. 36.

The Sun-bittern (Eurypyga helias).

Russia and the Lower Danube. The Bittern (Botaurus stellaris), a shy bird, noted for its peculiar guttural, booming cry, now only a winter visitant to England, is an example of a slightly different form. Of Herous and Bitterus there are altogether about eighty-two different species. The Bird known as the Sun-bittern (Eurypy!a helias) is very unlike the true Bitterns. It has a very thin neck, and is marked in a peculiar way with transverse stripes of white, brown, and black, so that, once
seen, its appearance is not easily forgotten. It inhabits riverbanks in South America.

A very odd South-American Bird (Cancroma cochlearia) is called the "Boat-bill," on account of its wide and capacious beak. Another Bird, not less singular and with a still larger

Fig. 37.

beak, comes from Africa, where it inhabits the banks of the Upper Nile, and is even there a rare Bird. It is of large size, and its great bill resembles somewhat the jaws of a Crocodile. It is called tire Shoe-bill (Butanicens rex). Another African Bird of very much smaller size (about the size of a Crow), with a much smaller and compressed beak, is remarkable for building
an enormous nest, shaped like an oven, which serves for many years. It is so solid that it will bear the weight of a heavy man. Mr. Layard saw one three gards long aud one and a half

Fig. 38.

The Shoe-bill (Baleniceps rex).
yard broad, and found it decorated with all sorts of bright objects, from bleached bones to brass buttons. It is called the Umbrette or Hammer-head (Scopus cmilmetta). When two or
three of them are feeding in a pond together, they will sometimes skip round one another, opening and shutting their wings and playing strange pranks.

Another tropical Bird, which has a very high-shouldered and

Fig. 39.

The Hammer-head (Scopus umbretta).
ungainly aspect, has a remarkably long and capacious, though conical bill, very long legs, and a maked neck with a ponch. This is the Adjutant or Marabou (Leptoptilus clubius), and it bears beneath its tail those small delicate plumes, which ladies use, known as "Marabou feathers." It ranges from Northern

Hindostan to the Malay Peninsula, and is of great service as a scavenger. It is a faithful attendant on slaughter-houses and the funereal burying-grounds of the natives, and has been

Fig. 40.

The Adjutant (Leptoptilus dubius).
observed standing and feeding on a corpse floating down the Ganges. It breeds in cliff. An allied species is found in Africa. These animals being known as Marabou Storks, naturally bring to our mind the thought of the true Stork (Ciconia
alba), which, though very rarely seen in this country, is abundant enough in Holland, where many pairs breed on boxes or other objects which Dutchmen place for them on the tops of their houses. They make themselves as much at home on houses as House-martins do ; and sometimes several nests are built upon the same roof, although a nest is a very large structure of 4 or 5 feet in diameter, made of sticks, reeds, and earth, and lined with hair, feathers, wool, rags, or other softer objects.

The Stork may serve as the type of about a dozen and a half

Fig. 41.

The Stork (Ciconia alba).

Stork-like Birds which are, for the most part, inhabitants of the Old World, though amongst them is the American Jabiru (Mypterio crncrictuet) and certain "Wood Storks" (of the genus Tentulus), which are often spoken of as "Wood Ibises," though they are in fact very different from the true Ibises, which will be spoken of later.

Another familiar large, long-legred, long-necked Bird, which has an external resemblance to the Stork, is the Crame (firus cincret1). This Bird is said to have bred in English marsh-
lands up to the close of the reign of Queen Elizabeth, and was one of the largest of true British Birds; now it is but a rare visitor to our shores. Its nest is never built in a tree, but on a small mound or "hummock" in some swamp. Cranes are

Fig. 42.

The Wood Stork (Mycteria americana).
even said never to perch on a tree, and they feed largely on regetable substances. The Demoiselle C'rane ((irus virgo, fig. 4:3) is a very elegant Bird, still more rarely found in our Islands. About seventeen species of the Crane family are known, whereof all but three are inhabitants of the Old World. Amongst these
latter is the Demoiselle Crane, just mentioned, and also the Stanley and the Crowned or Balearic Crane, one or more of which kinds are generally to be found exemplified in our Collection at the Regent's Park.

Here may be mentioned the Trumpeters, Cariamas; and Horned Screamers, all of which are South-American forms, and

Fig. 43.

each one of which merits some special attention from the student of Ornithology.

The Trumpeter (Psophia crepitans) has a short beak, velvety plumage, and weak powers of flight.

The Cariama, or Seriema (Cariama cristate, fig. 45), is a large

Bird, also with a shortish beak, which emits a cry somewhat like the subdued bark of a dog. By some Ornithologists it has been taken to be a sort of long-legged Hawk or Falcon, and it is a bird of prey as far as reptiles are coucerned-at least, it has a great reputation as a Serpent-killer, so that by many it is highly valued and carefully protected.

Fig. 44.

The Trumpeter (Psophia crepitans).

The Horned Screamer (Palamedea cormuta, fig. 46) is a Bird of very singular aspect, since a delicate horn, about 5 or 6 inches long, curves upwards and forwards from about the middle of its head. It has a short beak and large feet, and each of its wings has a long, strong, and sharp spur. It does not scream so loudly as do two allied species (('humm), which have no horn. The voice of one of these is said to be so loud as to be audible when
soaring at so great a height as to be hardly visible. The Horned screamer is said to be a quiet peaceable bird in spite of its spurred wings.

The name of a curious Bird from New Caledonia must not

Fig. 45.

be passed over unnoticed by the student. This is the Karu (Rhinochetus. jubutus, fig. 47), a grey Bird with orange and scarlet feet and bill. Eren in captivity it will often perform antics which are quite remarkable. In its native haunts it hunts for suails, worms, and other swall creatures by night.

After this short excursion amongst Birds of different distant lands we may return to more familiar forms. First of these may be mentioned a Bird which was common enough in England a hundred years ago, though it is now but a rare visitant. This is the Bustard (Otis terela, fig. 48), a large stout Bird, which may be taken as a type and representative of a group of six-and-twenty species which are entirely confined to the Castern Hemisphere,

Fig. 46.

The Horned Screamer (Palamedea cornuta).
including Australia, though there are none in Madagascar or the Malay Archipelago. Some Bustards seem to have lingered in England till 1845, although they are said to have deserted their accustomed haunts on Salisbury Plain about 1810. They, however, occasionally visit us, and in the winter of $1870-$ 1871 no less than twelve were seen-three on Salisbury Plain once more, and seveu in North Middlesex. The Bustard is a
regetable-feeder, and a large and handsome Bird, standing between 3 and 4 feet high, and running and walking well as well as flying rapidly.

Fig. 47.

The Kagu (Rhinochetus jubatus).

A rare visitant to our shores is the Courser (Cursorius gatlicus, fig. 49), one of a group of ten species which, like the Bustards, love to range over open plains of the Old World.

In the Southern part of the New World, from Mexico south-
wards, another group of Birds are to be met with, somewhat like the Partridges in general aspect. These are the Tinamous, of which there are some thirty-nine kinds, whereof the species called Tinamus robustus (fig. 50) may be taken as a type. They are creatures of singular stupidity, and they are ground-frequenting

Fig. 48.

The Bustard (Otis tarda).

Birds like those last described. They merit, however, very special attention on account of their very peculiar internal organization, as will be pointed out later on.

I Bird which at once arrests attention from a peculiar arternal character is the Spoonbill (Platalea leucorodiat), one of
a family found in both the Old World and the New, and consisting of tive species. As their curions bill would suggest, they wade into the water in search of food. There is one European species, and this bred in England down to about 1670, and even now a few birds seem each year to risit us in spite of their

Fig. 49.

The Courser (Cursorius gallicus).
unremitting destruction by the curious, and eren by ornithologists not ashamed of saring that thus a specimen of a rare British Bird has been by them "obtained"!

A well-known English Bird, the beak of which is not flattened but elongate and curved, is the Curlew (Numenius aicuutus): and it is to be found in winter on almost every part of our

Fig. 50.

The Tinamou (Tinamus robustus).
Fig. 51.

The Spoonbill (Platalea leucorodia).
coasts. Curlews run and walk with ease, though they take to flight at the least alarm and fly away very quickly. In summer they migrate inland to heaths and marshes, where their loud screaming cries are very noticeable. The genus to which it belongs is cosmopolitan, though it only breeds in Northern regions. It contains about a dozen species, one of which is the Whimbrel.

The long aud curved beak of the Curlew may well recall to

Fig. 52.

The Whimbrel (Numenius phcopus).
the reader's recollection the similarly long and curved beak of the Ibis. One species of the genus, the (ilosss Ihis (Ihis futcimellus), inlahits Alrica and Europe as well as America, so it is mot wonderful that it is sometimes seen in England. There are about two dozen linds of these birds, where of the Sacred Ihis (llis (thioprice) is the most renowned. Though so familiar an whject in ancient Eypptian art, it is now rarely seen on the Nile north of Khartom. The searlet lbis of south America (Ibis muba) is the most beautiful form.

Those smaller running and wading Birds, the Coursers and Curlers, naturally suggest other forms which resemble them, more or less, in exterual appearance or in habits; we refer to such smaller forms, still common in England, as the Plovers, Turnstoues, Sandpipers, Ruffs, suipes, and Woodcocks. The last of these, the Woodcock (Scolopace rusticola, fig. 54), with its enormously loug straight bill, which is a delicate iustrument

Fig. 53.

The Sacred Ibis (Ibis cthiopica).
of touch, belongs to a small group of four species, and is found in Europe, North Africa, and Central and Northern Asia, ocensionally extending to America. Another species is truly American, while one imhabits New Gminea and another Java.

The common English Snipe (Gullinecyo media) may stand for a rather numerous group of Birds which closely resemble it, and are spread over the whole world.
 Whase gracofal adive movements may be obsorved in antumn
 is thes way it rana reters the wed sand dolose for the wavers an they mbent, lual its rapid movemonds for eseape the waves

 How Nomderime *, and the Dmblin, as wedl as different, kinds of those Birder which aro commonly called "Sandpipors."

His. Whe

'Then Wooblewek (Simopure ruasticoler).

 wilh "Rodshamlin," Willots," and "Thallore," masy bo roppo-

 los fonnd whthin the Nordsern Ilomisphore.

[^3]Vory lifes thates biods in thes well-known Ruff, which is as noted for its emombative habita as fos the hamdentme elonegated

 oftorer uroup of abomet four mperesen, all Noridern formis.
$1, \ldots$,

Thes Senfr (Muchetes puryoust)

 white plumage and its shraight and proworful bill. Thes hroed

[^4]As might be expected under such circumstances, the Birds are able to swim. There are about seven species of Oystercatcher, spread over all the great divisions of the earth's surface.

A great contrast to these Birds is presented by the Stilt (Himantopus melenopterus), with its very slender beak and exceedingly long legs. It is occasionally seen in England, but there are ten other species of the genus, four of which are found in the Australian region and two in America. The two American species and one Australian one are very often separated off and united with the graceful and singular Arocet

Fig. 56.

The Oyster-catcher (Hematopus ostralegus).
(fig. 58) into a separate genus termed Recurvirastra. The Arocet used to breed in England in Romney Marsh and the marshes of our Easteru Comnties, but drainage has been fatal to it here and in many other places, and it is said only to breed now, in Northern Europe, in the islands off the coasts of Holland and Demmark. The delicate recurved beak of the Arocet when once seen can never be forgotten.

But a still more singular and absolutely peculiar bill is
possessed by a New-Zealand Bird (Ancrihynchus frontalis), or Crooked-billed Plover. Its bill is not curved either upwards or, as so commonly, downwards, but to one side (fig. 59,1).

An elegantly marked shore Bird-with a plumage of black, white, chestuut, and brown,-which industriously searches for food amongst rocks and stones, aud which, from its habits, is

Fig. 57.

The Stilt (Himantopus melanopterus).
known as the Turnstone (Strepsitas interpres), is one of three species which are contined to high Northern regions. They greatly resemble that very fimiliar Bird the Golden Plover (Chacardrius pluvialis, fig. 60), which is to be found, during summer, breeding on the high hills and swampy grounds of the North of England and Scotland. There are forty species of the genus-

The Crooled-billed Plover (Anarhynchus frontalis).
A. Head seen from above, to show the lateral curvature of the bill.
the Dotterel being amongst them-whereof some are Australian, others South-American, others Indian or Ethiopian; the rest being from Northern lands.

Certain other Birds, which are rarionsly mamed as "Thickknees" or "Stone-curlews" or "Stoue-plovers," are exceedingly like the true Plover. Indeed, one English species is often taken as being the Plorer "par excellence," namely the species termed (Edicnemus crepitans (fig. 61). It is often called "the Great Plover" or "the Norfolk Plover," as well as by its

Fig. 60.

The Golden Plover (Charadrius pluvialis).
common, but misleading, name of "Stone-curlew." It is one of about nine species, whereof two are from south Anerica, three from South or Central Africa, and three from India or Australia.

The Peewit or Lapwing (Temellus cristetus), the cry and flight of which almost every one is familiar with, is the trpe of a group of about thirteen species, while another thirteen constitute the closely allied group Lobivanellus.

Here, perhaps, may be mentioned certain Birds called the Sheath-bills (Chionis albu), with a short aud curious beak, which in manner and appearance somewhat recall the Pigeons to mind.

There are but two species, and they live in Kerguelen Island, the Crozettes, and extreme South America, feeding on sea-weed, eggs, and small shell-fish. A Bird called the Pratincole (Gitareolu pratincola) inhabits the temperate and warmer parts of Europe, Africa, and Asia, and occasioually visits England. It frequents the open country (marshes and sandy plains) or the sea-shore, feeding on insects, and giving out a most peculiar rattling

Fig. 61.

sound. It has long, pointed wings, a forked tail, and short lers, and has been a great puzzle to Naturalists as to where it should be placed in their systems. It flies about a great deal with something of the motion of a Swallow, which perhaps accounts for Limneus having classed it with that Bird. Tnlike the swallow, however, it runs rery well on the ground and even wades into pools. It is the type of a gemus which consists

Fig. 62

Fig. 63.

The Pratincole (Glareola pratincola).
altogether of ten species, whereof five are Ethiopian and two Oriental, while one is found in Australia.

We have now brieffr survered a great number of Wading Birds, berinning with the Rails and Coots. Their long toes we saw to be noteworthy, but there is yet another group of rery similarly formed Water Birds which have their toes still more elongated to facilitate their walking orer the large floating leaves of

The Brazilian Jacana (Parra jacana).
some aquatic plants of the warmer regions. These birds are kuown as "Jacanas," and the species Para jacana may be taken as an example of ten or a dozen others, some of which are inhabitants of the Old World, while others are American. One form, which is the largest, has a long tail and is classed in a separate genus as the Pheasant-tailed Jacana (Hyclrophusiames
chiruryuss). These Birds, as just said, have a superficial resemblance to Moor-hens and Coots, some forms of which need further mention here, as was before indicated *. For the Moor-hen of the island of Tristan d'Acminh and that Coot-like Bird the Yotornis of New Zealand hare (like the Penguins) no power of flight and have probally lost it. The Weka lail of New Zealand (Ocydromus custralis) is in the same case or nearly so, and is most easily caught. Various species of tlightless

Fig. 65.

Mantell's Notornis (Notornis mantelli).
Birds have thus of late become extinct, like the Great Auk before noticed \dagger. Thus Mantell's Notornis (Notornis mantelli) has become entirely extinct in the Northern Island of Nerw Zealand, and is nearly extinct altogether.

Numerous species of gigantic Birds called "Moas" (Dinomis) hare also been found in New Zealand, and were destrosed by the Maories. They were also flightless, and were of huge

[^5]bulk. Iet a Bird of Prey (Hurpotyornis), as large as an Eagle, and with enormous talons, existed there also, and is thought to have been powerful enough to have made the smaller Moas its prey. Three other noteworthy Birds which have become extinct may here also be referred to. The first is the Dorlo (Ditus ineptus), which iuhabited Mauritius and became extinct by the end of the serenteenth century. The second is the Solitaire (P_{e} opphaps soliturius), which was larger than a Turkey and lived to a somewhat later day than the Dodo, but in the island of Rodriguez. The third extinct kind (EPyomis

Fig. 66.

Mantell's Apterys (Apteryx mantelli).
maximus) lired in Madagascar, and may have done so to withiu the last two centuries. It was a hinge creature, and Jaid so enormous an egg that it may hare given rise to the fable of the Roce's egg. Such is the case, because its egg may in early times have been an article of commerce: and the judgment that the size of an eqg is a sure index to the proportions of the parent Bird is a very natural judgment, though an erroneous one.

Other Birds, differing much more than these from all existing Birds. became extinct in much more ancient times. such were

mill be further noticed in our Fifth Chapter, as their peculiarities could not be appreciated by the student before becoming acquainted with the leading facts concerning the Anatomy of Birds.

Another feathered inhabitant of New Zealand is rapidly rerging towards extinction, namely, the Apteryx (Aptery, mentelli). It lays but one egg, and can neither ruu rapidly

Fig. 67.

The Rhea (Rhea americana).
nor fly in the least. Its single egg is exceedingly large in proportion to the Bird itself, which is about the size of a Hen. There are four species of the genus, which have each a very long, curred bill and only most minute rudiments of wings.

The largest existing Bird is also a Ground-bird, and utterly incapable of flight. This is the Ostrich (Struthio camelus), which is exclusively an inhabitant of Africa. It is represented
in South America by a smaller Bird, which is called the Rhea or American Ostrich (Rhcuctmericunce), of which there are really three species. Another large and bulky Bird, quite incapable of flight, is the Cassowary (Cusuctius guleatus) of the Papuan Islands and North Australia. There are nine species of this senus. Another very similar Bird is the Emeu (Dromeres novehollandice) of Australia. There are two species of this geuns.

Before proceeding further it may be useful to the student to take stock a little of the forms we have referred to, and

Fig. ${ }^{18}$.

The Cassowary (Casuarius galeatus).
endeavour briefly to class them in a merely popular manner, referring to external appearance, or modes of life, only. It is useful for the beginner to be able to think of them in large groups (such as the groups which first suggested themselves to naturalists), even though he will find that such groups have to be largely modified owing to more recent adrances in science. It is thus, indeed, that he will be best emabled to appreciate the value of such advances.

Starting with our most familiar Bird, the Fow!, we have
noted, in sequeuce thereto, the Pheasants, Peacocks, Guineafowls, Turkeys, Curassows, Brush-turkeys, Grouse, and Partridges. These Birds have been regarded as really alike by earlier and later Ornithologists, and we may tind it convenient to refer to them sometimes as Fowl-like or Gallinaceous Birds,

Fig. 69.

The Emeu (Dromcus nove-hollandie).
and, from their habits, as "Scratchers," while Pigeons have been spoken of as "Cooers."

The Duck and Geese led us to Grebes, Disers, Puffins, Guillemots, Auks, Penguins, Cormormen, Ciannets, Pelicans, Gulls, Terns, Skimmers, and Petrels, the superficial resemblances between which have caused them, before their anatomy
was better knorrn, to be regarded in a lump as "Natatory Birds" or " Swimmers."

The long-legged Flamingo next conducted us to the Herons, Bitterns, Storks, Cranes, and Bustards, and thence to smaller Birds, such as Coursers, Tinamous, Curlews, Snipes, Stints, Godwits, Stilts, Plovers, Peewits, and Rails, most of which are more or less long-legged, and have more or less a wading habit, on which account they have been called "Stalkers," "Waders," or "Grallatorial Birds." We were introduced to this group from the Ducks through the Moor-hens, but we ended

Fig. 70.

The Common Kingfisher (Alcedo ispida).
hy affirming the greater resemblance between these last-named and the Rails than between them and the Ducks.

Ifter noting certain species which have become extinct, we enamerated other kinds, which are also eminently "Stalkers" or "Cursorial Birds "-such as the Ostrich, Rhea, Cassowary, and Emeu, all of which we mentioned after referring to the Aptervx.

In dars of loose classification these were regarded as forming one group, with the Wading Birds above referred to, the whole being spoken of as Cursorial birds, or Gralle.

We must now pass to Birds which are very different from
any we have yet considered. As, however, the majority of the forms we have referred to have had to do with water, we may begin our next series of forms with one familiar kind which haunts our streams, namely, the Kingfisher (Alcelo ispida).

This well-known blue and red Bird, with its long, straight, and sharply pointed bill, may stand as the representative of at least one hundred and sixty-six species which are exceedingly like it. They are scattered very unequally over the whole

Fig. 71.

The Dipper (Cinclus aquaticus).
world, being most poorly represented in America, and most richly in the Indian Archipelago.

The Common Kingfisher loves a quiet spot-some silent pool or some secluded trout-stream with deep banks and well shrouded with foliage. It flies very straight, with its short wings rapidly vibrating, and will dart from the tree on which it has perched, seize a fish and return to beat it dead against a branch, unless it carries it to the hole it has excarated in a
bank, wherein is its foul bed of rejected fish-bones. Very differme is the comfortable ahode-domed-shaped and formed of mosis and dry grass - of the Dipper (Cincles uruaticus), which also haunts our mountain streams, even passing much of its time under water searching for the small creatures on which it feeds.

$$
\text { Fig. } 72 .
$$

The Great Black Woodpecker (Picus martius).

In rapid, rocky rivulets it is to be found in England all the year round. It represents a group of about a dozen species of similar habits found in both worlds, mainly in the Northern Hemisphere.

The Dipper, mulike the Kingfisher, does not perch on trees,
but a Bird the very existence of which would seem to be absolutely dependent on them is the Woodpecker.

The Great Black Woodpecker (Picus martius), a Bird that seems to hare been once or twice seen in Eugland, and our Green Woodpecker (Gecinus viriclis)-the loud cry, or "laugh," of which is so commonly to be heard-are examples of a very large and rery distinct family of Birds.

There are about three hundred and fifty different kinds of Woodpeckers, but though so much more numerous in species thau the Kingfishers, there are none in Australia any more than in Madagascar or Polynesia-uone passing beyond C'elebes. As might be expected, they are most abundaut in the enormous forest-regions of South America, though, strange to sar, a Woodpecker (Colaptes campestris) is to be found more to the south, in the plains of La Plata, where there is not a single tree to peck.

The handsomely marked English Bird, which, from its habit of twisting its neck from side to side, is known as the Wryneck (Jynax torimilla), and which will hiss like a snake, is oue of a small group of four species of the Woodpecker family.

A rery numerous and remarkable group of Birds, for the most part great climbers of trees, is formed by the Parrots, whereof the common Grey Parrot (Psittucus crithucus), from Africa, may be taken as a type. Amongst Parrots, in the wide sense in which the term is here used, we include Macaws, Cockatoos, Ground-parrots, Grass-parrakeets, Love-birds, \&c. They have all a most umistakable family resemblance, though there are, at the very least, four hundred and ninety-two kinds of them. They are especially tropical Birds, but they are also to be found in the temperate parts of Australia and in New Zealand. Australia, indeed, contains the most raried forms, though South America is the region which has the greatest number of species. Africa is poorly supplied with Parrots in comparison with the other warmer parts of the world. No representative of the group now exists in Europe, although fossil remains indicate that such was not always the case. A Parrakeet (Commers carolinenses) still exists in Florida, and was abundant in the United States, further north, eighty years ago.

One of the most curious species is called the Owl-parrot (Strimfops habroptilus), on account of its extraordinary and most exceptional resemblance to an Owl. It is found only in New

Zealand, which is also the home of another kind as exceptional in its habits as is the Owl-parrot in its plumage. This second kind is the Kea Parrot (Nistor notabilis), which has acquired the bad habit of feeding upon Sheep, which they will kill by puncturing them in the back, and tearing down upon the kiduey, the fat of which they greedily devour.

Fig. 73.

The Owl-parrot (Stringops habroptilus).

It is generally supposed that we have here an instance of an extraordinary change in habit and instinet, and that the Bird was exclusively a regetable-feeder till the introduction of sheep into New Zealand. Dr. H. Woodward, F.R.s., has, however, surgested to us, as by no means improbable, that this Bird in
former days may have fed upon species of Dinornis, perching on their backs in a situation whence they could not easily be dislodged. If such was the case, it is easy to understand how the woolly back of the sheep might readily have attracted these Parrots. It would have but recalled to their imaginations associated sensatious leading to acts which revived this instinct which thus had only become dormant in them.

$$
\text { Fig. } 74 .
$$

The Kea Parrot (Nestor notabilis).
A variety of other groups of remarkable Birds have no representative in Europe, and many of them are exclusively inhabitants of South America, which contains the most extensive forest-region in the world.

Amongst these are the Toucans-very brightly coloured Birds with extraordinarily large, elongated, gently curved beaks, which
are as remarkable for their lightness as their size. Of this group-which does not even extend to the West Indies-there are fiftr-nine different species. The largest of these, the Toco Toncan (Rhamphastos toco), may stand as a type of the whole.

Another group of brilliantly coloured climbing Birds, with stout but very much smaller bills, are called Barbets, on account of the long bristles which project forwards around the beak. The Red-headed Barbet (C'apito erythrocephatus), which may stand as a type, is, with a few other species, an inhabitant of

Fig. 75.

The Toco Toucan (Rhamphastos toco).

America, although its allies are for the most part Old World forms. Some of these are singularly local, as is known to be the case, for instance, with the Blue-faced Barbet (Megalamu asiutica). In a wild state they are said to feed on fruits and berries, but some of them in captivity have been known to kill small birds and swallow them whole. They prohably, therefore, do so when wild. There are about one hundred and eight species.

The Puff-birds are in some respects like Barbets externally, though they are also not unlike Kingfishers. They are smaller in size than the Barbets. Forty-three species belong to the group,
twents of them pertaining to the genus Bucco, and the species Bucco tectus (fig. 76) may serve as a representative of the whole. Ther feed chiefly on insects, which they take on the wing, darting after them suddenly from a loft! branch, much as a kingtisber darts after its prey. They are exclusively confined

Fig. 76.

The Red-headed Barbet (Capito erythroccphalus).
to south and Central America. The same is the case with the Jacamars, Birds which are sometimes taken for Kingfishers; their mode of feeding is similar to that just noted with regard to the Puft-birds. The Jacamars are usually of a green tint and hare a metallic lustre. Their heaks are long and their tails wedge-shaped. The Grern Jacamar (Gallula viritis) mar serve
as a type of the group, whereof there are at least twenty different species.

We have just spoken of Birds with large or long beaks, but there is a very noteworthy, though very small, group of Birds whose beaks are so transversely extended that they have obtained the name of Broadbills. The whole group consists but of a

Fig. 77.

dozen species, arranged in seven genera, and the Jaran Broadhill (Eurylemus jetenicus) may stand as a type of them. It frequents the banks of rivers and lakes, feeding upon worms, and builds a pendent nest, which orerhangs the water. The Broad-bills are described as rery stupid Birds, which move about in small parties, and allow themselves to be shot one after the other. Some of them feed on insects in the same mode as

Fig. 78.

The Javan Broad-bill (Eurylamus jaranicus).
do Putí-birds. They give out either a mellow, musical note or a whistling sound.

Beaks still larger, and occasionally much hearier than those of any of the lately mentioned groups, are found in the Horubills. These Birds are much larger than Toncans,

Fig. 80.

The Red-necked Hornbill (Buceros ruficollis).
and they are as entirely confined to the warm parts of the Old World, as the latter are to those of the New. Hormbills are found in Ethiopic Africa and the warmer parts of Asia, down to New Guinea, where the Red-necked Hornbill (Bucerms inficollis) is to be met with. These Birds have a very curious hatiot. The Hen makes her nest within a hollow tree, and there
her mate shuts her up, closing the aperture of the nest with mud and other substances, so that only a small openiug is left. Through this aperture she and her youm progeny are fed hy the zealous devotion of the male Bird. There are about sistyeight kinds of Hornbills.

Fig. 81.

The Violet Plantain-eater (Musophaga violacea).

There are certain other rather large Birds which may by their aspect recall to the spectator's mind the Curassows or other Gallinaceous Birds. These are the Turacous or Plantaineaters, of which the Violet Plantain-eater (Musophugre violdaca) may serve as an example. This very handsome Bird
comes from Western Africa, and the whole group, consisting as it does of about twenty-five species, is entirely confined to that

$$
\text { Fig. } 82 .
$$

The White-backed Coly (Colius capensis).
Continent, where they feed on fruit, frequenting the loftiest trees. On the head is an elegant crest of feathers, which they can elerate or depress. Almost all of them have a beantiful
red colour on the wing, which can be washed awar with soap and water. This colour is due to the presence of a pigment which has been termed "Turacine," which has been shown to contain copper.

Fig. 83.

The Green Tody (Todus viridis).

About eight species of fruit-eating Birds are known as Colies, and they are also exclusively inhabitants of Africa. Here we again meet with a crested head, but their long tail amply serves to distinguish them from the Plantain-eaters. 'The White-backed Coly (Colius copurisis) is bot uncommon in

Cape Colony, where it is known as the Mouse-bird, and is said always to sleep hanging head downwards. They are shortbeaked Birds, often to be seen in Zoological Gardens, for they can be kept with considerable facility.

Another small group of Birds, still more restricted geographically, are the Todies, of which there are but nine species,

Fig. 84.

The Bee-eater (Merops apiaster).
all confined to the West Indies. With their short tails aud straight, rather long bill, they have somewhat the aspect of Kingtishers. The Green Tody (Torlus viriclis) may stand as a representative of this small group.

Birds named-from their habits-Bee-eaters are found
throughout the warm and temperate regions of the Old World. They are beautiful creatures, from which the common species (Merops (tpirster)-a Bird which is occasionally found in this country-may be selected as a type. Altogether there are thirty-five species more or less closely allied to it. They excavate, with their long bill, a cavity in some sandy bank,

preferentially the bank of some tiver, and therein make their nest. Ther like the open comntry rather than the shade of woods, and they are conspicuous from their bright coloration.

Birds which much resemble the Bee-eaters, but which are entirely confined to Central and South America, are the Motmots, of which the Motmot per excellence (Momotus momutns) may serve
as the representative. There are nineteen species in this group, arranged in seven gencra. These Birds go ahout alone or in pairs, often sitting motionless on a branch till they dart off to snatch some insect. They appear to have a singular babit of cutting away with their toothed bill, in a regular symmetrical manner, certain parts of the feathers of the tail.

Another very small group, numbering about eleven species, consists of Birds which are called Honer-guides or Indicators, the majority of which come from Africa-about a

Fig. 86.

The Honey-guide (Indicator major).
couple of species coming from India and the Malay Archipelago. Ther species named Indector merfor (which inhathits South and Thest Alrica) may be taken as a type. It is firmly believed in Ifrica that these Birds will gude people to bees nests. and feed upom what honer mar bo left when the nests have been suceessfully taken. 'They should, however, rather be called Bee-guides tham ILoner-guides, since their object is to be able
to feed on the Ben-grubs, not on the honer, and ther will enide to nests which contain no honer. The Indicators are plain Birds, and have a rery bad habit, siuce they will hay their egge in other Birds' nests.

In this ther resemble the Cuckoo (Cumbus conmers), a Bird with which almost all Englishmen must be familiar-at least as regards its monotonous song. It is a type and representative of a wonderfully distinct group of Birds, which inchudes about one hundred and sixty-five species, although to the uninstructed eye they may not seem nearly so distinctly

Fig. 87.

The Cuckoo (Cuculus canorus).
marked a group as those which contain the Parrote, Woodpeckers, or Kingfishers. Ornithologists associate with them the group of Plantain-eaters, before noticed *, making a group of one hundred and ninety-one species, at the least. C'uckoos are rery widely diffused, and extend into both the Old and New Worlds, including Australia and the West Indies. They seem to be absient from the coldest reqions alone.

In summer erenings, in the South of England, a curions noise, like the sound of a small rattle, is very commonly to le heard.

[^6]Fig. 88.

The Hoopoe (Upupa epops).

This is the voice of the Nightjar or Goatsucker (Copmimul?us europens). The Bird itself will often suddenly appear, rising almost from under tho spectator's feet, flying away with a curious, jerking, irregular motion, something like the flight of certain Moths. It is a very handsome Bird, haring its feathers marked with many delicate, dark bars. It lives exelusively on insects, especially Moths and Beetles, which its wide-gaping

Fig. 90.

mouth is admirably adapted to catch. It is a type of a wellmarked group of about cighty species, arranged in at least five genera.

No greater contrast could well exist between two Birds of not rery dissimilar size than exists between the Nightjar and the Hoopoe (Uprupa eprips). The latter has now become very rare in England, hecause, unlike the Nightjar, it is no sooner seen than it is " obtained" by some zealous collector. It is a
striking and elegant Bird, with a long, slender, slightly curred bill, and a large spotted crest of feathers which can be raised or depressed. It passes much of its time on open ground searching for insects. The male feeds the female when sitting on her rough nest in a hole in some tree, thus reminding us of the Hornbill, although the hen Ifoopoe is not enclosed, and probably

Fig. 91.

The Long-tailed Trogon (Trogon macrurus).
leares her nest occasionally. It is the type of a very small group of some fourteen species, of which only five belong to the genus $L_{L^{\prime \prime}}{ }^{\prime} p($, and the whole fourteen members of the group are confined to the Old World, excluding Australia and the Indian Archipelago.

Inchuded in this group are the Wrood-hoopoes (Ifrisor), which are jeculiar to Africa, where they inhabit the forests. Of
these, Jackson's Wood-hoopoe (Irrisor jacksoni) may serve as our type (fig. 90).

There is a very gorgeous group of Birds, with glowing brilliant metallic hues, which are known as Trogons. Of these there are a

Fig. 92.

The Lyre-bird (Memura superba).
little less than fifty kinds, thirty-three of which are inhabitants of Tropical America, and the long-tailed Trogon (Troynn macron'us) may stand as a type of these vers handsome creatures.

Still more beautiful and much more raried than the Trogons
are the renowned Birds of Paradise, of which the largest lnown form, Parudista uporla, may be taken as the representative.

Of these wonderfully ornamented Birds, there are fully fortyfour species: but they are mevertheless exceedingly restricted in range, none being found in any part of the world but the Moluccas and New Gininea, save one or two in Australia.

Fig. 93.

The Iellow-throated Manakin (Pipra aureola).

There is a Bird the curious tail of which reminds us a little of Birds of Paradise, in spite of its dull colour. This is the Lyre-hird (1Henure supertat), so-called from the peculiar disposition and form of its tail-feathers (fig. 9\%). It and two allied species are peculiar to Australia.

A group of small birds of brilliant plumage, and entirely
confined to South America, are the Manakins, of which the Yellow-throated Manakin (Pipicl aurole) may stand as an example. This little bird from Guiana is red with a black hack, tail, and wings, and a yellow throat. There are about fiftynine species of the group to which it belongs. They are all small shy birds which are dwellers in woods.

Fig. 94.

The Cock-of-the-Rock (Rupicola crocea).

A curious and very handsome Bird of an orange-red colour is called the Cock-of-the-Rock (Rupicolu crocet), the antics of which have been so well described by Mr. Darwin. It comes from Cayenue.

The Umbrella-bird (Cepherlopterus ormatus, fig. 95), so-called from its peculiar crest, and the Bell-bird (Chusmorlymelus mulicollis, fig. 96), which derives its name from its wonderful note, are likewise South-American Birds, as is also the Blue Chatterer
(Cotinga corruled) of Cayemne. This last is a type of a group of some hundred and ten species to which the Cock-of-the-Rock and the Umbrella- and Bell-birds also belong-a group linown as the Cotingida.

Yet another exclusively South-American Bird is, as we shall hereafter see, of extraordinary interest, owing to its exceptional structure, and the divergence of opinion which has existed, and

Fig. 0.5.

The Umbrella-bird (Cephalopterus ornatus).
exists, as to its true affinities. This is the IIoatzin (Opisthucomes ristutus, fig. 97), which inhahits (tuana and the immense Valler: of the Amazon. When hatcherl, it has two well-developed fingers, cach with a claw, and is said to creep about on all fours like a Quadruped.

The curious and rapidly disappearing Huab-bird of New Zea-
laud (Deteratocha acutirostris) is rery remarkable because the two sexes have rery differently shaped beaks. The male's is short, straight, and conical; the female's is long, slender, and very much curved (fig. 98).

The Bower-birds, so noted for the playing-places, or

Fig. 96.

The Bell-bird (Chasmorhynchus nudicollis).
"bowers," which they construct, and which do not serve as nests, are a small group of sixteen species absolutely peculiar to Australia and New (xumea. Of these, the Satin Bower-bird (I'tilonorlynctus viducens, tig. 99) will afford a good example.

We may now return to consider certain Birds which are represented in our own region of the world. The Common Roller
(Coracias !amula, fig. 100), which tumbles in the air somewhat like a Tumbler-pigeon, is a very handsome bird which is common in the South of Europe, and occasionally visits England. It is the type of a group of bright-coloured Birds which extend southwards to Australia, the Malayan region, and Madagascar, but

Fig. 97.

The Hoatzin (Opisthocomus cristatus).
are absent from the New World. There are twenty-four species in the family. An allied form from Madagasear, called the (yrombo (Leptosumu discolor), has a similar tumbling habit and a peculiar condition of the nostrils.

That rery familiar Bird the IIouse-martin (Chelidon urluice)

Fig. 98.

The Huia-bird (Heteralocha acutirostris).

The Satin Bower-bird (Ptilonorhynchus violaceus).
represents a group of Swallows and Martins which is spread orer the whole world, and contains about eighty-two species. Of these the Common Swallow (Hirundo rustica) may answer as our example.

Swifts greatly resemble Swallows in general appearance and in their mode of flight, though this is much more powerful. Nevertheless, as we shall see, they are really very distinct from them. They number about eighty-six different kinds, which range through the warm and temperate regions of the

Fig. 100.

The Common Roller (Coracias garrula).
globe. The Common Swift (Cypsetus apus) stays with us little more than three months, quitting our shores for the south about the middle of August.

Extremely contra-ted with the Swift is that charming little, bush-loving Bird the Wren (Anorthura troyloutytes, fig. 10-)), the lively shrill note of which mas be heard all the year romed. It is an example of a numerous group of small, similar Birds numbering some lumdred and thirty-four species, the great majority of which are exclusively Americau. The Golden-crested Wren
(Regrulus (ristaters) is a yet more attractive esample of a very small group of but six species.

There is a vere lovely group of little hlue and black Australian Birds which have a somewhat smilar aspect to Wrens. Thuir fifteen species constitute the genus Malurus.

Fig. 101.

The Swallow (Hirundo rustica).

With its small tail and shortish bill. the Wren may remind the reader of another lower of trees which resides with us all the year round. This is the Nuthatch (Sitta cursia), which is so noticeable for its habit of ruming up and down the trunks of

Fis. 102.

The Wren (Anorthura troglodytes)

Fig. 103.

The Nuthatch (Sitta casia).
trees, to which it clings with its strong feet. This Bird may serve as an example of a group of ahout twenty-eight species Which are found seattered over the Northern Hemisphere south of the Arctic regions.

Its pectuliar morements recall to mind another nearly allied English Bird, the C'ommon ('reeper (Cothen fumitimeis), which is found all over England, and has received its same from its

Fig. 104.

The Warty-faced Honey-sucker (Mcliphaga phrygia).
creeping motion over tree-trunks, which has been compared to the movement of a monse. It has a much longer, more slender, and curvel bill, and is a type of a group), containing about sixteen species, which is nearly allied to the Nuthatches. Except one Mexican species they are all Old-World forms and several pertain to Australia.

Another set of Australian Birds are the IIoney-suckers or Houey-eaters, which, with their long, slender, and curved bills,
form a very characteristice zoological feature of that region. More than one homded and forty different species belongy to the group, whereof the curious, black and rellow, watr-
 They are not ahsolutely confined to Australia, but extend into

Fig. 105.

The Ruby-throated Humming-bird (Trochilus colubris).
the islands of the Pacific, while the larest nember of the gromp, kinown as "the Paronn Bird." has its home in New Yealand.

Long and slemede bills are atso characteristic of thone most heantifully coloured of all Bird-the Hummins-birde, from
 roblunis) as our example. There are at the leat, four handred
and seventy-six apecice of these Birds. The y are all exchusively contined to America, but different apecias are so distributed that the whole sroup may be said to lange over that continent from Alaska to Patagonia.

Only second to the Itumming-birds in beauty are the sumhirds, which are as exclusively confined to the Old Wrond as the Itmming-birds are to the New. They are manly African

forms, but they also range through India to Australia. The Metallie Sm-bird (Aecterimin metallicu) may be taken as a type of the group, which embraces a hundred and five different : pecies, arranged in nine senera. They have loner and slender bills like the Humming-birds.

Of those charming familiar little Birds known to us as Tits, one of the most charming is the Blue Tit (Pervecomens),
which shows itself even in our towns. We take the Coal Tit (l'urus b, itumnicus) as our example of this group of Birds. of which there are serenty-seven species, the greater number, and the brighter kinds, being confined to the Old World. With few exceptions, they do not extend beyond the Northern IIemisphere.

Fig. 107.

Coal Titmouse (Paris britamicus).
A very numerous group of small. brilliant Birds, confined to America, and mainly to Tropical America, are known as Tanagers, and there seem to he mo less than three hundred and seventy-fotir species of them. Their phage is very often more or less extensively or markedly red, but may he of various other bright tints, and Tincture $p^{\text {isempms, which may stand as }}$ our type, is of a pale blue colour marked with white spots.

Fig. 10 s.

The Golden Oriole (Oriolus galluria).

Fig. 109.

The Chaflinch (Fringilla calebs).

A heautiful black and yellow Bird, which is oceasionally to be seen, during the spring, in the South or East of England, is linown as the Golden Oriole (Oriolus !fatbula). It is common

Fig. 110.

The Crossbill (Loxia curvirostra).
(rnough in Europe during summer, but in the winter it retreats to South Africa. In spite of its conspicuous coloration it is not easily seen, hecause it loves to conceal itself amongst dense foliage. It feeds mainly on insects and caterpillars, but also on fruit, and has a beautiful flute-like note. It is the type
of a group containing at least about thirty-seren species. They are all Old-W orld Birds, manly inhalhitants of Asia and Anstralia, though a few are African, as is the one which sometimes reaches our shores.

That handsome faniliar little Bird the Chaffinch (Frimgilne

Fig. 111.

The Reed Bunting (Emberiza schoniclus).
culdses) is a trpee of a very large group of Birds called Finchs, to which the Ilouse Sparrow (Pesser domesticus) also belonge, as likewise does the curious ('rossbill (Lodia chmirostia), the Virginia Nightingale (r'urdimelis vivyminmes), and the luscious Oetolan or (ireen-headed Bunting (Emberize hortulunct), and the marsh-loving Reed Bunting (Emherizu scheniclus), but not
the true Nightingale. Of this large family-group of stouthilled Birds there are more than five hundred different species, some or other of which are found all over the globe, except in Australia.

The Bohemian Waxwing (Ampetis gumpulus), an occasional visitor in England, is an example of a small group of nine species of Northern forms. It is one of the most beautiful

Fig. 112.

The Bohemian Waxwing (Ampelis garrulus).

Birds ever to be found in our country, and its name is derived from curious appendages, like small pieces of sealing-wax, which are attached to certain feathers of its wing.

The Blackeap (syluta atricturlla), which is the best-known of our Tharblers, and one of the earlier arrivals of the spring (the roner of which is considered as hardly inferior in quality to that of the Nightingale), is the type of a group within which the

Sedge Warblers and the Wood Wren are also contaned. It embraces about two hundred and nimetr species. They are all dull-coloured Birds inhabiting the Old W'orld, having their headquarters in the countries surrounding the Mediterranean sea.

But there are a number of uther Birds, also called Warblers,

Fig. 113.

The Blackcap (Sylvia atricapilla).
but distinguished as "American Warblers" (Aluintittic("), of which there are some hundred :nd thirty-seren kinds.

The songster whose note is the most familiar to the inhabitants of these islands is, perhaps, the Thrush (Turlus musicus), and it is the type of a large cosmopolitan family of Dirds numbering fully three hundred and forty-four species. Amougst

Fig. 114.

The Thrush (Turdus musicus).

Fig. 115.

The Wheatear (Saxicolc cenanthe).
these are the not less familiar Blackbird, the Fieddfare the Wheatear (Sumicolu amenthe), our Robin (Sirithecess rembenta), and. most distinguished of all, the ever-welcome Nightingale (Firithencus luscimir). Not less welcome, because most melotions, even in the month of JLarch, is the song of the Sky-lark (Alumle (1rvensis). It is one of a group of about seventy species which, with two exceptions, are all confined to the Eastern Hemisphere. One of the most familiar on the continent of Europe is the Crested Lark (Galerita cristata).

Fig. 116.

The Crested Lark (Galerita cristatu).

The renowned American Mocking-bird (Mimes polyyloitns) is the type of another family, numbering forty-seven species.

Certain Birds called "Ant-thrushes" may, on account of this denomination, be here refereed to, though they cannot be considered to resemble Thrushes at all. They are more properly called Pittas, and the Bengal Pitta (Pittu inengulensis) may be considered as a represemtative of about fiftr sperios. Ail of them are confined to the (Old World, the Malay Archipelago heing their headquarters, whence they extemi, in different directions, to Australia, Africa, and Northern China. They are

The Bengal Pitta (P'itta bengalensis).

The Brazilian Ant-thrush (Formicarius crissalis).
noisy Birds, dwelling in forests, and remarkable for their brilliant coloration. They feed on insectr, snails, slugs, and other small creatures.

Certain birds are known as American Ant-thrushes, and they have much the habit of Butcher-birds. They rarely descend to the ground, and are very noisy. The Brazilian Antthrush (Fommicurius crissulis) may stand as a type of the group. Which contains some two hundrei and fift-four species.

Fig. 119.

The Barred Wagtail (Motacilla lugubris).

The Wagtail, or Dishwasher (Motacillu humbiris), is a type of an almost exclusively Old-World group of Birds -- Wagtails or Pipits-consisting of ahout sisty-four species, one section of which is very like our Wagtail, while another resembles our Meadow Pipit (Anthus prutensis), which is to be seen on commons and waste grounds all the year round.

The Common Starling (Stumus: velyuris), with which almost all our readers must be familiar, is a convenient example of
another group of Birds containing about thirty-five species, Which are exelusively Old-15 orld in distribution. One of them is the Rose-coloured starling or Pastor (P'estor rosens), which has been often shot in England, thongh it can only be regarded ats one of the accidental risitors to our shores, whereof it is one of the handsomest. Starlings may often be seen perched on the backs of sheep or oxen, which they benefit by extracting from them ticks and other parasitic pests. Another species of

Fig. 120.

The Pastor (Pastor roscus).

Bird, howerer, called the Beef-eator or Oxpecker (Buphemin crithirorlycher), found in south Africa, similarly perches on the backs of cattle for parasites, especially the grubs, or larva, of a fly ((Extons). In extracting these, howerer, it is apt to produce bad sores. There are two species of this genus.

I Bird is often to be sem in our Zoological Gardens which i- petter sure to attract attention by the ere or the ear, on by both. It attracts the eye by its conspicuous bright
yellow wattles which project from its head, which, with the body, is of a fine velvety black. It attracts the ear not only by its very loud note, but frequently by the sentences it articulates, for it can be easily taught to speak. This is the Grackle or Myna of India (Eulubes reliniosu, fig. 122). There are at least five species of the genus, and it is the type of a family-group of Birds of about ninety-three different kinds, all of which are

Fig. 121.

The Red-billed Oxpecker (Buphaga crythorhyncha).
inhabitants of the Old World. The Grackles are mainly dwellers in hill-forestr, dwelling in the highest trees, living on fruit, and never descending to the ground.

This noisy hird may recall to mind our noisy and bright, though very differentis coloured, Jar (ficerontus sf(enturius); it is the type of a large group of Birds --the family of Crowsnumbering about a hundred and sixtr-four species, sonte or other of which are to be found in most parts of the world. Amongst

Fig. 122.

The Southern Crackle (Eulelles religiosa).

Fig. 123.

The Magpie (Pica pica).
them mar he emmerated the Magpie (Pica picel), the beantiful
 Common Rook (Trompenmemern firmileyms), the Jackdaw, the

Fig. 124.

The Spotted Flycatcher (Muscicapa griscola).
group of Birds is mainly an Old-World one, although it is comopolitan in distribution, save that it is absent in New Zealand. Two species of Crow are found in Australia.

Certain Birds called Weaver-l)irds, whereof the Common

Weaver-hird of India (Plocens humu) may be takeu as a type, form a large family-group of two hundred and eighty-eight species. These birds are distributed over Africa and India, extending into the Malay Peninsula. They are not vers unlike Finches, but are of especial interest on account of the wonderful nests some of them construct, as will be noticed later on *.

There is a large group of Birds called Flycatchers, which, although they are confined to the Old World, yet number more than four hundred and five species. Of these we may

Fig. 125.

The Red-capped Babbler (Timelia pileata).
 It is one of the most recular of our summer risitants though late in its amival. All these Birds have similar habits, catching insects on the wing, and then returning to the perch from which they took wing to catch them.

There is also a rey large group of Birds called Bahblers, or Thabling Thrushes, of mot leas than three hundred and serentrspecies, more or less, whereof the lied-capped Babbler (Timelin pilutu) mat be taken as a type. It inhabits grassy plams, but the erroup to which it belongs consists mostly of bush-birds, that

$$
\text { * Sec below, p. } 232 .
$$

feed on insects, and go in small flocke, which are constantly in motion, chatteriner and piping as ther go. They are fomed in Africa, India, and Australia.

A much less extrmsive group is that of the Bullouls, and the Madmas Bulbul (Prgronotus humerohens) may serve at an example of them. They are Old-World Birds, and are very destructive to fruit. There are about one bundred and eighty species

Fig. 126.

The Madras Buibul (Pycnonotus hemorrhous).
in this family-group, and they are peculiar to the Indian and African regions.

The Barred Woothewer (Ditulioooldptos ractiolutus) may be takeu as the type of a large family-group of exclusively Tropical American Birds, numbering some two hundred and seventy-two
species. They are climbing birds, and many of them bave much the appearance of (reeper.: A rery handsome species is Bridges's Woodhewer (Drymornis britgesi).

The () ven-hird (Furutrins ullootularis, fig. 129) . which is said to burrow in the ground, is another example of a special section of the group.

Fig. 127.

The Barred Woodhewer (Dendrocolaptes radiolatus).

There is a pugnacions, irritable set of Birds exclusively confined to the New World, and manly to south America. The King Tyrant-bird (Tyrumus cerolinensis) may be taken as a type
of the whole four hundred and fourteen kinds which compose the group. They are remarkable for a tlattened hill, and for the strong bristles about the gape. The Tymant-bird is a roracious

Fig. 128.

Bridges's Woodhewer (Drymornis bridgesi).
eater of insects, hut as Bees are amongst those destroyed by it, it is not a popular hird in North America. Birds which are really aggressive and destructive are the Shrikes. Amongst them may be noted the Great Grey Shrike, which is but an

Fig. 129.

The White-throated Oven-bird (Furnarius albogularis).

The King Tyrant-bird (Tyrannas carolinensis).
occasional visitant to this country. It feeds on mice, small birds, froos, lizards, and rarious insects. The commonest species of the genus is the Red-backed Shrike or Butcher-hird (Lamius collurio), and may serre as our type of the whole group. The name of Butcher-bird has been no doubt occasioned from the curious habit it has of impaling its prey upon sharp thoms or fixing them into clefts. Fragments of its victims, pieces of skin, with bleached bones of birds or mice, or the dry bard cases

Fig. 131.

The Rerl-backed Shrike (Lanius collurio).
of beetles may be seen suspended all about in the vicinity of its nest, so that the bush supporting them may be compared to a small butcher's shop. This hahit is supposed to be due to the feet of the Bird not being strong enough to hold its food satisfactorily while tearing it with its sharp and toothed bill: so that it is convenient for it to have its prey securely fixed by such an artifice. It may also be that the food is more welcome after haring become tender by keeping. There are about 266 species.

Some forty birds known as Drongo Shrikes are fly-catching ones which associate in flocks. They are Old-World forms, mostly with loner, forked tails, whereof the Black Drongo Shrike (Buchanga atra) may stand as an example.

The toothed and powerful beak of the trpical Shrikes would scem by itself enough to show that such creatures were Birds of

Fig. 132.

The Drongo Slurike (Buchanga atra).

Prey, and tre may shortly proceed to notice forms which all agree to be Birds of Prey par acellace. Before doing so, however, we may note a very curions form-a bird with such a hooked and Hawk-like hill that we might be disposed to include it in the predaceons set. The creature refereal to is the Oil-bind (Stentornis ctriphesis) of the island of Trinidad. But this Bird, with so formidable a bill, is said to feed on the fruits
of palms and bre means on other Birds or Beasts which need to be tom to pieces. It is a nocturnal Bird, dwelling in the deepest recesses of caves, wherein it makes a nest (shaped like a cheese) of the soil of guano found by it within the cave, in which the rejected seeds of palms enter as constituents. The young are very fat, and are sometimes eaten by persons who manage not to be disgusted with the odour which is peculiar to them.

Passing on now to true Birds of Prey, we may first refer to the Sparrow-hawk (-lecipiter nisus) as an example. It is still

Fig. 133.

The Oil-bird (Steatornis caripensis).
more or less common in most of our counties. There are 1 wo-and-twenty other members of this genus, which is united with nine other genera to form an Accipitrine group of eighty-1 wo species, amongst which is our (ioshawk (-Istur pratmulturius) and the Marsh Harrier (Circus ceruginosus).

The Kite (Jilums requtis) was, a hundred years ago, a very common English Bird, but now it is only an oceasional visitant. Its deeply forked tail and hahit, when on the wing, of sailing in circles withont apparent effort serve to distinguish it easily.

The Peregrine Falcon (Fulco perestrimes) is an example of a
more powerful group of Birds of Prey than that last mentioned. There are five-and-twenty species of the genus Felco. The Peregrine Falcon is the Falcon of Falconry, but our Hobby and our Merlin both belong to the same genus, as well as that rare

Fig. 134.

The Greenland Falcon (Falco candicans).
risitant to our shores, the (rreenland Falcon (Falco cendicans). The Kestrel (Falon timumcentus) is a still more familiar Bird than the sparrow-hawk, from its habit of poising itself in the air, and remaining apparently in one place whist rapidly moving
its wings. There are eleven genera of Falcons, and at least seventy-eight species, and the sroup is a cosmopolitan one.

Our Buzard (Butor) m! ly(ris), a bulke, short, and now ver? scarce Bird, belongs to a group of fitty-one species which is

Fig 135.

The Common Caracara (Polyborus tharus).
cosmopolitan, save that it is absent from Australia, Polsnesia, and the Malay Archipelago.

Besides the foregoing, a small group of but ten species, with curionsly half-webhed feet, are pecouliar to South America and are called Caracaras. The Common Caracara (Polytorns theross) may serve as an example. They pair for life, and
each couple has its own permanent nesting-place. They vigoronsly chase Lapwings and Tinamous, and are very bold when several combine together. They sometimes attack and kill young Rheas, in spite of the efforts of the parent bird. In the absence of better food, howerer, they will feed on carrion.

Fig. 136.

The Osprey (Pandion haliaëtus).

The Golden Eagle (Aquila chrysaëtos), still to be found in heotland, is one of some ninety-seven species of Eagles which are scattered over the whole world.

The Fishing-hawk or Osprey (Punthon hataëtus), which we may certainly still reckou as a British Bird, is the only species
of its genus. It is generally distributed orer the world, thongh absent from the temperate parts of South America.

The Caracaras have just been spokeu of as feeding much on

Fig. 187.

The Black Vulture (Vultur monachus).
carrion ; but the most renowned feeders upon it are the Vultures, which are valuable scarengers in hot comutries: whereof the Black Vulture (Vultur monctlus) is a type. It is to be found
on both sides of the Mediterranean, and extends to India and China.

It is recorded that an Egyptian Vulture (Yeopheron perenopterus) was shot in Somersetshire in the year 1825. When found it was busy eating the carcass of a sheep, and was so gorged that it could not, or would not, fly far at a time.

$$
\text { Fig. } 138 .
$$

The King Vulture (Cathartes papa).

There are fully sixteen species of Vultures, forming a oroup which is peculiar to the Old World, where they range over its warmer regions, save the Malay islands, Ceylon, Madagascar, and Australia.

In the New World there are nine other linds of Vultures forming il distinct group. Of these the Condor (Sarcorhamphus
(fropplens) may still selve as a type, though it may ere long become extinct. The handsome King Vulture (Cuthartes 1mpa) also belongs to this group.

I rery curious and exceptional predaceons creature is the Secretary-bird (efmpyoremes sorpentarius) of Africa, which has long legs like those of a Crane. It is a renowned Serpenteater. The name of "Secretary" has been applied to it on

Fig. 139.

The Secretary-bird (Gypogeranus scrpentarius).
accome of a peeuliar growth of feathers hanging from the back of the head in such, ab way at to recall the appearance of pens placed behind a man's ear.

Owh, umlike Valturn, are found in the coldest as well as in the warmest climes, and in the remotest Ocemic islands. There are a hundred and fifty-one species of $\mathrm{O}_{\mathrm{w}} \mathrm{ls}$, whereof the Barn O_{wl}
 most of us, though it is really a tropical form, imhabiting, as it does,
the warmest parts of both hemispheres and ouly asconding some distance northward in the mild climate of Western Europe. The hooting (ry of the Wood or Tawny Owl (Symmium uluco) is familiar, no doubt, to most of our readers who dwell near any well-wooded parts of the country. The Great Iforned Eagle-owl

$$
\text { Fig. } 140 .
$$

Ithe Eagleowl (Bubo ignavas).
(Bubo ägureus), which has often been taken in this country, and the smallest of British Owls (S'opss !(iu), must not be passed by without any reference, as they are good examples of the most numerous section of the entire group of Owls.

Before proceeding to consider the structure of Birds, it may be well tirst to cast a backward glance over the route we have come, and to once more take stock of the principal forms to which the readeres attention has been called, as being so many specimens of different groups of Birds.

Our object, as before said, has been to affurd some help tw the investigation and memory of the becrimer in his attempt to obtain a mental grasp of the whole Class of Birds. For this purpose we have spoken of great groups arranged in a rough and ready, or popular', mamer, as "scratchers" or" (fallinaceouBirds," as "C'ooers," as "Sivimmers or Natatory Birds," as "Waders or Crallatorial Birds," and as "Rumers or C'ursorial Birds."

Amongst the many forms to which we have refered since speating of the Emen* - the last of our Cursorial Birds mentioned -are a certain mumber which have feet specially modified so as effectually to help, them in climbing-two toes lieing turned onm way, the two others being turned the opposite way. Amongst the Birds the feet of which are thas moditied, are the Womlpeckers, Wrynecks, Jacamars, Cuckoos, Barbers, Toncans, Tonratcons, Plantain-eaters, Parrots, and Trogrons-the last named being specially exceptional in the arrangement of their tome. All these Birds, thas specially fitted for dimbing, have berot distinguished as "Climbers" or" scansorial Bieds."

The Birds last noted by us--the Hawke, Falcons, Buzards. Kites, Eagles, Ospreys, Vultures, and Owls-are all Birds of Prey or Rapine, and they are hence spoken of as "Raptorial Birds." Thuse most like the Hawk, the weneric name of which we saw was " Aecipitor", are also distinguished by the epithet "Accipitrine."

Almost all the rest of the Birds we have herein referred to (i.c. all since the Cursorial Birds, which are neither Scansorial nor Raptorial) are, however different in size, form, or appearance, frequently called Perching Birds, Perchers, or Insessores. From the mane of their commonest species, the sparrow, "Pusser;" they have also been called Passervine Birds or ". Passeres;" and most of them are still commonly so denominated. They constitute the great majority of the whole class of Birds. On account of their prodigious numbers it was long ago felt necessary to divide their members amongst subordinate but large

[^7]groups, and this was done by C'urier, who mainly rested bis divisions on the form of the beak. Thus, as the Shrikes have a marked notch or "tooth" on cither side of the bill, he placed them in a group called toothed-hilled or Dentirostral Birdsassociating with them the Flycatchers, Tanagers, Waxwings, Thrushes, Orioles, Warblers, Manakins, Lyre-birds, the Witer Ouzel, Wren, Wagtails, Pipits, and Mynas.

The Swallows, Swifts, and Goatsuckers, on account of their wide gape, were also associated together as wide-mouthed or Fissirostral Birds.

The rague name of cone-shaped beak was bestowed on the Larks, Tits, Buntings, Sparrows, and other Finches (including the very exceptional C'rossbill), Colies, Oxpeckers, Starlings, Pastors, Crows, Magpies, Jays, Rollers, Birds of Paradise, and Woodpeckers. These were all spoken of as "Comirustial Birds."

The remaining Passerine Birds, all of which have long, and most of them slender bills, were taken together in a group designated as "Tomirostral Birds." such were the THmminglirds, sum-hirds, Creepers, Bee-eaters, Honey-eaters, Hoopoes. Molmots, Todies, Nuthatcher, and Kingfishers.

Thus there were recognized in popular Urnithology:-(1) Raptorial Birds; (2) Teunirostral *, Conirostral, and Dentirostral lasserine Birds; (3) Scansorial Birds; (4) ('urnorial Birds ; (5) (aallinaceous Birds; (6) Crallatorial Birds; and (7) Natatorial Birds; and these constituted the primary groups into which Birds were divided by Curier. These divisions hate, for the most part, become obsolete; but it is none the less desirable that the beginuer shonld not be altogether ignorant of them.

We have now enmmerated the more leading forms of Birds, and the student who has acquired some shight linowledse of each of the groups whereof a named type has been here put before him, will be able to set forth on a scrious study of the whole class of Birds. Ite must not suppose, howerer, that all the more important forms hase been as yet indicated. To set ont a complete list is impossible in an introductory chapter, except at the cost of making it so hurtheusome as to defeat the rery object for which it has heen written. Nevertheless, we believe the forms herein brought forwardand distinguished are sufficient in number for our purpose, so that it will be enough hereafter, when intro-

[^8]ducing to notice any new bird, to refer to the resemblances in appearance or to the affinity which it may possess with some or other of the species and groups to which the studentis attention has been called.

We may now pass on to the next subject we have to consider, the Organization of Birds. Before, however, entering upon the question what part any organ or organism can play, it is necessary to have some notion of what such organ or organism in itself really is. A study of "Structure," or " Morphology," should always precede a study of what any structures, or the whole organism they compose, can do. This latter inquiry constitutes the study of "functions," or " Physiolumy."

CHAPTER II.

Tife External Structure of Birds.

TIIE body of every Bird consists of a compact central part, or trunk; a very moveable neck, bearing a rounded head with a more or less prolonged beak; a pair of wings ; a pair of legs, and a short solid tail. It is always clothed with featherw and the wings and tail almost alwars support long ones. The legs end in from two to four toes terminated by claws. There are always a pair of eyes planly visible, hut the equally constant pair of ears generally wive no external indications of their presence.

The leading facts of the internal structure of a Bird are, like those of our own internal structure, matters of common knowledge. Thus it is almost superfluous to say that immediately beneath the skin of a Bird is the "flesh" of its body, which more or less amply mraps round its bones-the bones of the head, neck, trunk, tail, and limbs. Within the trumk is a cavity wherein lie a variety of parts known as the heart, lungs, kidneys, crop, stomach, intestine, liver, \&c.

Luside the skill, and its continuation posteriorly, the backhone, is a mass of white substance-the brain and spinal marrow: Delicate threads of similar substance (nerves) and tubes of various sizes (yessels) traverse the body in all directions.

Each considerable and more or less distinct part is called an * organ"-as e.!/ the heart is an organ of circulation. Each connected set of organs is called a system-as the leart and the vessels called "arteries" and "reins" form the "circulating -Tstem," and the brain, spinal cord, and nerves form the "newous system." The flesh is composed of muscle, and all the muscles taken together constitute the "muscular system," and we shall presently lave to notice the" "alimentary," "respiratory," " uri-
nary," and " generative" systems, as well as organs "of investment and support." which consist of the external skeleton-the skin with its appendages-and the interual skeleton, or the skeleton commonly so called.

We will first notice the organs of investment and support. begiming with the external skeleton-the skin and its appendages.

The skin of a JBird, like our own, consists of two layers : -an external laver called the epidemis or cteron, and a deep fibrous layer, supplied with nerves and blood-vessels, called the rermis or culderon. The feathers, the horny scaly outer skin of the feet and legs, and the nuter covering of the beak are all epidermal structures-that is appendages or modifications of the epidermis.

Before describing any of these, we will first note some of the general conditions which modify and determine the leading characteristies of bird-structure.

The whole oreanization of Birds is specially modified to subserve flight. It is this which mainly governs the general shape of the body, the arrangement of the organs of movement-the muscles-and the position and packing of the internal organs or visecra, which are so plawed as to be most couveniently carrid near the centre of the hody's oravity, so helping to maintain that in a suitable position. Nlight determines the structure and form of the mot intermal organs, the bones, as well as of those wonderfully delicate and beatiful structures which clothe the body exterually. At the same time all Bieds have more or less to walk, and verre many have to swim; and hence arise varions structural conditions which, however, with rare exceptions, are never so modified as to impede flight.

The fore limhs are absolutely and entirely given up to Hight, not even takine on any other function in hirds which cannot fly. Those of the Ostrich only assist its rmming by their flapping, while those of the Penguin act as organs of aquatic flight beneath the surface of the water.
since, then, some members must be applied to ordinary locomotiou, all birds reguire to have a pair of legs exclusively or mainly devoted to that function. But as much delicate work (as $t \cdot \%$ in nest-building) has often to be done, which a foot even when used like a hand, as by a Parrot, could never do, there is nothing but the head to do it. Hence arises the need of a more or less elongated and very moveable
neck, to euable that delicate grasping organ, the beak, to perform all needed manipulations.

So complete is the packing of parts towards the centre of the body, that eren the hard structures which serve to grind the fond are not in the form of treth in the mouth, but of stones swallowed down and held in the modified stomach * or "gizzard." The voice-organ, also, instead of being at the top of the throat (as in man and beants) is at the bottom of it, and many of the muscles are largely reduced to strings or "tendons" for a great part of their extent.

But very powerful muscles are needed to work the wings. and this again demands a vigorous circulation with rery pure blood and a body lightened as much as possible. These conditions are admirably fulfilled in most hirds by a provision for the entrance of air into their very bones. This diminishes the specific gravity of the body, while it helps to purify the blood and so facilitate the action of the mancles, and therefore flight. A Bird may be said to breathe not only with its lungs, but with its whole frame. Hence the lightness of Aquatic Birds on the water, swimming most easily with a boat-shaped body and oarlike feet; some also, such as the Swans, heing provided with sails, in the shape of their raised and slightly expanded wings.

For fight nothing could be better than the shape of the hody of most birds, which is in the form of two cones united by their bases, with a small romeded head and pointed beak in front, poised on a meck which, by its protrusion or retraction, can, at will, change the position of the centre of gravity.

The rapidity of flight may be very great; a Falcon which helonged to Ifenry 15. of Prance flew from Foutambleau to Malta (1350 miles) in one day. The race-horse "Eclipse" went a mile a minute for a short time; hut a Mawk at full speed has been calculated to fly at the rate of 150 miles in one hour, and an Eider-duck at 910 . The distances also which birds traverse are prodigious. Our Swifts and Swallows fly to the Gold Coast of Africa, and our Cuckoos to the Cape of Good Hope.

All this wonderful work, facilitated by the arrangement above noted, is directly effected exclusively by means of certain feathers of larger size than those which clothe the body, never by expanded skin as in the Bat.

All Birds, as before said, have this characteristic external

[^9]investment. It is beantifully adapted to harmonize with the rest of their organzation, heing extremely light, wam, and nonconducting. It thus serves most effectively to maintain that high temperature which distinguishes their class.

Beasts are provided with hairs, hut feathers are much more complicated and elaborate organs. They are, in fard, the most complicated of all the aipsendages of the skin which any avimals possess.

Whaterer may be their modifications of size, colour, or texture, they are ali formed on one common plan. Fach feathor consists of a firm central axis, the base of which is the "quill," and the part above this the "ruches" or "scappes" or "shat "t," to which the wid, werillum or poymiom, is attached on either side. The "webs " of both sides of the " rachis," taken together, constitute the rew. The quill is implanted in the slin and has two apertures one at either end. Into the lower -the zimtriticus infirion- the solt vascular "pmetp" of the feather penctrates. The other aperture is called the mmbilich: superior. The "rane" comsists, as before said, of the flattened expanded parts on both sides of the central axis, and each lateral portion of it (the fore or outer weh, fig. 141, F , or the hind or inner web, II. Y.) is made up of a number of elongated closely arranged lamine called " butros;" while trom the margins of each barb much smaller processes project, called "harboules" or "renlii," and the sides of the barbules may also be furnished with still smaller processes or "hurblulets," or buednets, or letimeti, or homilds. Not unfrequently a second shatt, called an " "fterstutt," ll.R., springs from the smmmit of the quill, and this is generally a miniature representation of the normal "shaft" with its "vane." The large feathers of the wing and tail never have an aftershaft. They present a striking combination of the two generally opposite characters-strength and lightness-in a rery high degree, as the barbules interlock and keep the whole structure remarkably firm and coherent. This kind of feather is called pernatcons. Certain feathers in which these part- are separate, and which also have long barbules, are very much looser in structure, and are called "phemes," and their structure is termed plumulacoous-such as those of the Ostrich.

Most Birds are provided with more or less "doun." Down consists of rery soft feathers, which may or may not haw an aftershaft, and may have no rachis at all, the soft barbs
radiating directly from the summit of the quill. Filo-plemes, or thecul-fecthers, much resemble hairs, as they are long and very narrow, with a rudimentary vane. Some of these are bristly and called setectous: and many Birds have a row of bristles or cibrissin hordering the opening of the mouth or !repe, and thesi are particularly long in the Goatsuckers *.

Fig. 142.

A. Axis. Q. Quill. R. Rachis, or shaft, or scapus. W. Vane, vexillum, or pogonium. F. Front half of vane or outer web. II.V. Hinder half of vane or inner web. B. Three barbs or rami. b. Barbules or radii. H.R. Hyporachis or aftershaft.

> Fig. 142. Diagrain (after Nitzsch) of parts of Web.

BD. Two barbs in vertical section. $b^{\prime} b^{\prime}$. Anterior barbules. $b^{2} b^{2}$. Posterior barbules. c. Barbicels, or barbulets, or hamuli, or hooklets.
Ciptain down-feathers are called probiphums becanse the ruds of their barbs habitually break up into a fine powder called powder-down, such as may be remarked on Parrots.

The ordinary feathers which clothe the hody and hide the down are called contone feathers. Their hasal harhs are commonly soft.

[^10]Feathers may be considered as rery complex hairs of a conical form, which split upacoording to a definite pattern. Each is at lirst a little, soft, rascular process or papilla, curionsly grooved. On one side is a central vertical groove, broadest at the base, and ranishing towards the aper of the papilla. Other less deep wrooves, closely set, go out, nearly at right angles, from either side of this vertical groove. They extend almost all round the papilla, only vanishing towards the middle of the opposite side to that which bears the vertical groove. (frooves smaller still and much shorter are given off again nearly at right angles from the grooves encircling the papilla, and sometimes others again from these. A homy seeretion is deposited on the papilla, and is, of course, thicliest where the grooves are deepest, and thimest where there are no grooves at all-i. c., on the interspaces of the grooves. With the progress of growth, this whole horny investment splite up abong the interspaces, where the deposit is thimest. The part which was the main reetical aroove is thickest of all, and becomes the shat of the feather, the parts in the secondary grooves becone the "barbs" "those on the still smaller ones the "barbules," and those in the occasonally present fet smaller umes, the "harthulets." sometimes a papila will have a vertical groote on cither side, and thent the feather will have two shafic (one an aftershatt)-as in the Casowary. The vane is the part of the case of the papilla which thus splits. The quill is that part of the ease which does not split at all. At the upper che of the guill there must be a small perforation which marks jut that spot wher the feather ceases to open and flattern itself, and hemins ow remain curled romed and continnous, as it all wiss at first. The spate where it thus begins to remain curled romed is the mblitions surporo, before mentioned. The papilla presists as the" pulp" which ascends through the umbilicus inferior.

Feathers are dereloped with great rapidity, sometimes attaining a length of iwo feet or more in a ferw days. They are also almost all renewed every year, and in many species twice a year. IW heu we think of the serions effects of teething in mankind We cannot but be struck with the great rital energy of hirds, and with the critical character of their process of monlting (certysix), which is, indeed, not unfrequently a fatal one.

The amual moult commonly herins just after the close of the hereding-season, and it takes place in all Birds, from the Wren to the Ustrich. Such a proceses is ohtions! a necensary
one as regards the most important feathers-those of flight. A structure which, howerer strong it mar be, is so delicately formed as is a leather, mist be liable to accidents and must sooner or later wear out. But if the feathers needful for tlight were not renewed. then such accidents and wearing out would canse birds to be mahle to fly, and therefore, for the most part, unable to fultil the conditions necessaly for life-that is to say, to obtain their food and escape their enemies. (On this aceount in almost all lirds the flyinc-feathers, or quill-feathers' of the wing are shed sradually and in pairs, so that the moulting birds can retain both their equilibrium and their porere of flight.

The mmerons family of 1ueks forms an exception to this rule, for most of them shed their yuill-feathers almost simulfaneonsly and so, for a time, are mable to fly. But then, from their mode of life, they have other resources for concealment and excape, and they can obtain their food in or near water. Aquatic herbage, which is commonly luxuriant, also affords them a ready and effective shelter.

Most male Ducks not only change their feathers, but also their colours. This necessitates for them another and secoud moult, in order to put on their gayer plumes for the next breed-ing-season.

Very rarelr, indeed, birds moult in the spring only, as is the case with the Swallows.

A wreat umber of birds undergo a double moult, but speciess Which are close allies may differ in this respect, as the C tarden Warhler (ぶ!lew sulicericu) differs, as it is sadd, from the Blackeap (Nylriun atricupilla) by moulting twice instead of once.

But there mar be yet more changes. Thus the Ptarmigan (Layopus metres) moults after the breeding-season (as usual), both sexes assuming a grey colour. They then moult again, to becone white in winter, and then moult a third time in the spring, to assume their breeding costame once more. The quillfeathers of the wing and tail are not. however, so of ten changed by them.

The second moult of Birds is, indeed, often but a reery partial one, and sometimes a certain change of phomage may he effected by an alteration in the colour of the feathers themselvessuch as is sometimes produced by the shedding of the barbulets or barbicels.

Besides the annual moult of adult Birds, the young may mudergo several changes in order to attain the fully developed
plumage of their species and sex. Some Birds, co!/, the Blatk Redstart (Ruticilla tithys) and the Rosy Bullfinch (I!yrithela rosccu), however, rear a progeny before attaining it *.

The young of most Birds do not shed the quill-feather's in their first year, and in many even an otherwise complete mondt does not seem to take place during that period.

When the plunage of the sexes differs, the young resembles the mother, save when the latter is more conspicuously coloured than her mate, in which case they resemble the male parent.

When the adults of both sexes are alike, the young is different from either. The young of botb the black and the white swan are of a dusky colour, while the back-necked Swan has white young.

It has been supposed that when adult birds assume at the breeding-season a phomage which difters from their winter dress, the young are intermediate in colour. The Linnet alone, however, suffices to disprove this dictum.

Feathers do mot by any means grow-sate in rame casesall over the body of Birds, but only along cortain definite tracts, the forms and arrabements of which are very chatateristic of different kinds. Such ant arrangement in a Bird is called its ptorylosis, and the special description of these comditions is called "pocoplomerithey" t. This does mot apply to downs.

While considering the form and structure of different parts and appendages of the external skeleton, it will be well also to note the conditions presented by the body as a whole and its rarious parts and members. In other words, we must st my the external topography of Birds-their head, wetl, bonly, tail, wings, and legs.

The Head and Neck.

The Itecel.-This is always more or less rounded and pytatmidal, and almost always covered with feathers. It terminates in front in the beak or lill, consisting of an upper fitw, or merillu, aud of a lower jaw, or memblefle \ddagger, each of which is provided with a more or less horny iuvestment, aud is maked or bears but a few feathers. 'The crown of the head is the er ot a, behind this is the occiput.

[^11]The equs are gemerally plated at the side of the head towards its middle, but may be placed further back, as in the Woodcock; or anteriorly vituated, looking forwards, as in the Owls. Each ege has an upper and a lower eyelid, and there is also a third evelid (a rudiment of which exists at the inmer angle of our eve) which sweeps obliquely over the eyeball within the other eyelids. If the ere of an ()wl or Hawk be watched, this will be seen at a pearly-white film rapidly appearing and disappearing as it covers and uncorers the eye. It is called the nictitutines membrane.

The ch: almost alvays operns a littlo below and behind the eve, but may do so below it, as in the Woodeock. It is hidden, and only indicated by a difference of texture in the feathers (un-icultuss) which coser them. Occasionally this opening is provided with a flap), which can close it, as in some Owh.

The nose is always made up of a pair of nostrils, thongh these maty open above likn one tube, ats in the Petrels. The nostrils open extemally on the bill in different situations in different birds,--at may be more conveniently indicated indescribing the bill. Internally ther opent into the back of the month, sumetimes by one aperture, but generally by two.

The part of the side of the heal hetween the ege and the base of the upper mantible is termed the " lone;" and the cheek is behind and below it in a line with the lower mandible. It the lower marsin of the cheek is a narrow, linear space known as the malar region.

The " chin" or mentmen is the part (feathered or bare) on the underside of the loner mandible hehind the point of junction of its two lateral halves or rami. This is also called the intwremel space. Below the chin is the sulue region or throat, followed by the jumntum or lower throat, to which succeeds the prepectus or fore-neck.

Some Birds-ate, e. g/. Turkeys and Yultures-have naked heads. That is, they have only filoplumes instead of ordinary feathers on their heads. Such Birds often posiess (as also do rarious other-s some other kind of warty or fleshe outgrowth called "r lutus" or "" wathes," "comals,"" "clurunctis." or "Hurns", such as those of the 'Tragopans ", as the case may be. The gular region mat be maked as in the Pelican's ponch, or the lores as in Cremes, or the circmmonthel region, or part round the eyes, as in the Herons. The ordinary feathered * See p. 6.
covering of the front part of the head may be replaced by a horny plate or " shield," as in the Coot and Mour-hen.

Ou the other hand, some or other: of the head-feathers may be exaggerated in size, formine orestr, which may be single and median as in the Coctratoo, or double and lateral, as in the so-called "horns" of Lared ()wls (structures which have nothing whaterer to do with the ears) and in the Crested Grebe.

Tery ravely feathers of the mentum may be elongated, as in the Bearded Vulture. More often those of the gular and malar regions with the auriculars may form "ruffs."

The Bill is prerhaps the most important part of a Birdis extermal organization for the purposes of classification. It is also a most importint organ in the economy of the Bird's life, for it not only serves for taking food, but, as already sail, subserves the purpose of a hand or tingers, and in some cases is an orgatu of feeling, as in the suipes and Woodcocks. The bill serve= for picking up, carrying, cutting, tearing, or crushing, according to circumstances, and it is almost always more or lesconical, generally ending in a sharp point.

Different definite technical terms are used by Ornithologistto denote its form. A bill is saill to be of medium leugth if it is about as long as the hoad. If less than that lenestle, it in short, and it is lome! it it moche exemeds it . I hill which is short is said to be wente il peointed at the tip. If there is a hooklike process at the tip, the hisll is calied hemulute or uncimute. It is dentate when twothed as in a loaken, and when there are at number of small teoth-like processes alone the margins of the bill, it is said to be surote. If the bill, as in the Duck, bears a mat-like process at the end of the maxilla, it is termed unemiculcte. When the bill is extremely longs and sleuder as well as pointed, it is sometimes compared with a needle and so called acicutur, or, if less shemer, to ann awl, setmetut. If only slightly elongated it is uremeinute; and the term uttennate is supposed to denotea condition intermediate between "acmminate" "and "subulate." A bill which is thatemeel is satid to be depressed, and if widened at the end is called spectulute (as that of the shoveller Duck and, still more, that of the poonlill). I bill rather high and narrow is called comprossed. A bill of the most ordinary shape, like that of a sparrow, is called conioostrol. A beak which is short with a wide gape, like that of the Swift, is termed fissirustral. The quite opposite condition of bill (e.!!, that found in
the Humming-bird) may be called "temirostrat." * If there is a noteh or tooth-like process at the side, then such a bill is said to be dentirostrat. A bill which is bent up towards the rud, as in the Arocet, is termed rectrect, while the opposite condition is decured, as in the Curlew. In one genus of crookbilled Plovers of New Yealand (Ancerbyncturs), the bill is, ats before said \dagger, bent laterally.

Before noting the terminology used to denote the parts and condition of either mandible, a few words may be said as to the coccicing of the bill, which will especially relate to the maxilla. In the immense majority of instances the bill is entirely hard and hormy, and the investment of either jaw is in one piece. In some Birds, however, as in the Petrels \ddagger, it may be in several pieces, and these may be moulted like the feathers, so that ther form part of the summer dress, and constitute a secondary sexual chamater, as is the case in the Puffins s. Such hills are said to be diccileners or ceechecous.

The bills of Birds are often marked with rideres proceeding in this or that direetion, and such are called cetrincte or striate, if the ridges are pretty straight. I bill, on the contrary, is said to be ernfusc or constigutal if the prominences form rather irregular wrinkles th:an ridges. If the bill is marked with linear depressions instead of ridges, it is termed "sulcult," each aroove heing a smates or furcom. If the depressions are not elongated, hut are little rounded ones or pits, the bill is called punctute.

Instead of beines all hard as horn, a hill may be of rather leathery texture, as in the Ducks, or invested with a sort of shin and rery sensitive towards the tip, as in the Woodeock. The bill may be hated towards the tip, hut notably softer at the hase, as in that in most Pigeons and Plovers. In Parrots and Hawks the base of the bill is clothed by a peculiar wax-like investment called a core, and this sometimes bears feathers. Sonnetimes the litl hears very large, soft, theshy processes, and then it is said to he commoulut. If the procesises are smatler, like wants, the linl is termed $L^{\prime \prime} y^{\prime \prime}$ illose, the warts being named papillce.

Tot mily is the lower jat moveable, but the upper one is so in 1 slight dugree, though this is hardly noticeable, sate in Parrots.

[^12]where its mohility is very marked. These differemoed denend on conditions of the skeleton, to be noticed later on.

The two mandibles are amost always of about "qual lenesth, moeting tonether at the point and not orerdapping. In the great majority of birds the lower mandible fits into the upper ome. This normal condition is termed paretymultons. Whan the mandibles cross each other towards their apiees, as in the Crosebill:, ther are termed metaymethous. This is an extremely rare condition, but it is by no mems unusual to find the upper mandible longe than the lowe one, and enving oree the tip of the latter, as in Parrots and Lawks. This condition is termed "phigmenthous. Rarest of all is the form demmmiateded heyp", frnthous, in which the lower mandible is long then the upper, in the Skimmer (Rhynchops) \dagger.

The two mandibles juin each other so as to form her their junction a line, which may or may not he straight, and which extends from the tip of the bill hack to the point where the two jaws laterally mite, which is the unghe of the moth. This lime is formed in part (anterionly) by the junction of the uppre and lower portions of the homy hill, and in part (posterdenty) hes the junction of the two jiws when the ir openiug exten ls backwards beyond the hinder end of one on hoth portions (upper and lower) of the home hill, and then two junctions reyuire distinguishing by two difisent namm. The former one is the tomke the latter one is the rictere, while the whente marem of the tomia and rictur, taken together, is the gry for or commissumel line, or line of commissunc. The angle o" the month may hee further distimerished as the print of commersone. The line

It will be" stmaght when the tomia and the rictue together form one straight lime. It will h...e curven," of simmet, when they together form one curved line. Finally, it will be " angutate" when both the tomia and the rictus are nearly stamght hat do nom lin in one linw. anst, therefore form an angle at their point of junction.

The mencilln or "py"r memdille has two definite lines most er ident to the observer when the bill is riewed in protile. One of these lines coincides with the uppermost margin of the bill

* See p. 104.

\dagger See abore, p. 30.
 his 'Key to North American Birds,' p. 105.
and is called the cutmen. The lower line coincides with its lowest margin, that which encloses the under mandible. This lower line is the marillary tomium. The culmen may be in the form of a sharp elevated ridge like a knife, when it is said to be "cultrate," the mandible which bears it being "Fectec"; the apex of the upper mandible may be Tumulate or unguiculate. The maxillary tomium may bear tooth-like processes or be notched like a saw, when it is said to be seroute. If it has a

$$
\text { Fig. } 143 .
$$

Partsof a Bill.
", Side of maxilla or uplur mandible ; ", culmen ; «, masal fossa; d, nostril ; e, tomia or inferior margin of upper mandible; f, gape, or whole commissumal line; $\{$, rictus; h. comminsuat point or angle of the mouth; i, ramus of under jaw; j, tomia of under mandible; k, angle of gonys: the hindermost puint of junction of the two rami nhich form the lower mandible is the "gonys proper," but the term is extended to apply to the whole line of union of the rami from the gonys proper to the tip of the mader mandible corresponding to the culmen or median ridge and upper outline of the upper mandible ; l. w, side of moder mandible; n, tips of mandibles.
single notch or tooth-like process (as in the Hawk) it is called dentete. It it forms a sharp edge like that of a knife it is (like a sharp culmen) termed cultrate, and if it is at the same tine much curved it is fulcute, or " like a sickle." An upper mandible provided with a series of transverse plates or ridges within it (like that of the Duck) is called lemellute.

The nostrils are almost always conspicnons one on either side of the upper mandible. As a rule they each open at the buttom of a depression, which when rounded is termed the
mesal fosser ; if it is long and narrow it is called the masel sulcus or groone. They are usually luterel in position, but are called culminal if they open on the culmen. When high, but not quite so high, they are supcrior, and they are infirior when nearer the maxillary tomium than the culmen, and they may be quite near the former-as in the Pullin. They are also usually bused or subbusel (i.e. situated near the base of the bill), but sometimes they are median, as in the Goose. In the Apteryx they are tormimul or at the end of the bill-a quite exceptional position. When the cere is feathered, they may be thus completely hidden, and they may be also hidden by the extension forwards of the frontal feathers of the head in pointed forward extensions: (called (entir) on either side of the culmen-as in the Grouse. They may be also covered by setaceous feathers which project forwards orer them, and therefore project in the contrary direction to that of the head-feathers generally, or are what is termed cutrorse in direction. Very rarely, as in the Pelican, the nostrils do not open externaily at all, or are impervious. It may be that they can both be seen through at the same time, or this may be impossible owing to the existence of a median septum between them. The terms porforate and imperforate are used to denote one or other of these conditions. The shape of the openings may vary from romm, to lincer, and they are sometimes termed oblonel, orate, overl, or clliptic, as may be deemed the most fit. They are sometimes club-shaped or clucute. They may sometimes have a raised rim round them much prolonged - as in the Petrels, and such are called tubular. Sometimes there is special development called a nusul scole, which may overarch the opening as in the Eowl, or may form a partial floor as in the Wryneck. The part of the bill between the nostrils is called the mesortinum.

The lover murtible is genorally the smaller of the two, being slightly surpassed by the upper at the tip and also laterally. It is generally also less deep than the other. Its cutting-edge is called the mentibulere tomiem, which bites against, and generally a little within, the maxillary tomium of the upper mandible. Each half of the lower mandible is called at icomes, and the two romi unite at the tip and for a greater or less distance, thence backwards and downwards as the case may be. This line of junction forms part of the lower margin of the lower maudible, and corresponds with the culmen of the upper man-
dible. It is called the fonys, and this term is enpecially applied 1o the posterior point of this line of junction. The gonys line usually forms from a half to three fourthe of the inferior outline of the bill, but it may form the whole or even more than the whole, extending backwards in a process-as in the Puftin. On the other hand, it is exceedingly short in many other waterbirds,.$!!$ the Duck and espectally in the Pedican. The longer may be the gonys, the shorter will be the extent of the space existing between the rami behind it, which is called the interremmel sputt. A hook or claw may exist at the tip of the lower mandible.

The Neck is always a part of much importance in a bird. not muly, as in ourselves, on account of the important organs which pass through it within, but becallse it has to move like an arm to subserve the hand-like action of the beak. It is, therefore always rery mortable and never very short, while it is sometimes, as in the swan and Flamingo, extremely long. The neck is always long when the legs are long, athe otwie the heak could not reach the ground; but it may, ats we ree in the Swan, be very long in propertion to the leas, and this is evident also in the Darter. The Darter and the Heron spear the fish on whech they feed, and so the head has to be klnown forward with the greatest rapidity, and at the same time with the greatest accuracy of direction. This is lacilitated by the fact that the neck of a bird forms (plainly or hardly perceptibly) a sigmoid -urve (the superior concaity and inferior convexty leing directed forwards), so conditioned by the shapee of the bones and the adjustments of the muscles, that it can be instantly straightened but not bent in contrary curves. The feathers which clothe the neck are named from the regions of it from which they grow. Thas those behind the neck are nuchet or cervicel, aceording as they belong to the upper part of the hack of the needi or to its lower part-the mine or wehte. Similarly, the feathers: on the luwest part of the front of the neck are thosic of the prituctus. Shore these are the jugnilur, then follow the ynlw, while all of them tegether are sometimes called gutturet.

The feathers of the necli are rarely elongated except as a "mochal crest." But there may be long jugular feathers as in the Heron, and the elongated neck-feathers of the Ruff are very remarkable. The neek may be bald here and there, or altogether so, as in the Vultures.

Ditgras of a Bird, to illustrate the terminology of the plumage and limbs (after Oates).

1. Forehead. 2. Crown or vertex. 3. Nape. Between this and 2 is the hind-head, or occiput. 4. Lore (space in front of the eye). 5. Supercilium. (The space around the eye is the "orbital" or "circumocular region " and is subdivided intosmperonbital, infra-orbital, ante-orlntal, and post-orbital). 6. Cheek or gena; its lower margin is the malar region. 7. Auriculars or ear-coverts. 8. Upper mandible or masilla, 9. Lower, or true, mandible. 1o. Culmen, or upper profile of maxilla. 11. Rietria, or commisural line oftionction(or gaper) of the two mandibles. The extreme posterior end of the gape is the corner or angle of the mouth, or commissural point. The space between this and the base of the horny bill is the rictus. 12. Ricial bristles or vibrisse. 13. Chin or mentum. 14. The throat-divisible into "upper throat" (gulit) and "lower throat" (jugulum), which extends down to 15 , where begins the prepectus, or fore-neck, after which comes the breast or pectus-that is the part which covers the breast-bone or sternum. 16. Abdomen. (The breast and abdomen together are called "gastroum.") 17. Back-the upper part of which is the interscapular region. 18. Rump or uropygium. 19. Scapulars. 20. Primaries (the outermost 9 or 10 quills of the wing springing from the pinion or homes of the hand). 21 . Sceondaries (winerenulls springing from the lower arm-bones-radius and ulna). 22. Tertiaries (springing from the upper arm-bone or humerus).-The primaries, secondaries, and tertiaries together constitute the "remiges." 23. Lesser wing-coverts. 24. Median wing-coverts. 25. Greater wing-coverts. 26. Primary wing-corents. 27. Winglet or bastard wing or alula (feathers springing from the thumb). 28. Upper tail-coverts. 29. Tail-feathers or rectrices. 30. Under tail-coverts. 31. Tarsus. 32. Hind toe or first toe or hallux. 33. Inner or second toe. 34. Middle or third toe. 35. Outer or fourth toe.

The Body and Tatl.

The Bocly of a bird forms, roughly speaking, an egg-shaped mass. This may be somewhat laterally pressed in, or it may be flattened from abore downwards, there conditions being termed (as in the amalogous conditions of the hill) compressed or depressel respectively. As in ourselves and in beasts, the body has its dorsal and its ventral region. The former is sometimes called the notomim and the latter the gustromm. The feathers of the belly are generally softer than those of the back. The surface of the back taken together with the dorsal, or upper, surface of the wings is also sometimes spoken of as the mantle. The feathers which grow on the shoulders are named scapulurs or scepmeterics, and, of course, the space between them is the metersctputar region. The part immediately behind this is sometimes distinguished as the lownor buck or tergum, and behind this comes the rump or uropygium.

The rentral region would seem hardly to need description, such simple terms as pectorat, cherdminul, and lateral apparently explaining themselves. Yet confusion has arisen, so that it is necessary to point out that the breast, or pectoral region, is the part over the sternum, behind which is the abdomen, and in front of which is the prepectus. The term " aissum" is one which is variously, and therefore rather misleadingly, applied to a region it may be desired to distinguish, and which is in near proximity to the rent. It is best applied to feathers just behind the rent, that is to the more anteriorly sitmated of those feathers which we shall soon describe-amongst those of the tail-as " under tail-coverts."

Tail. - The tail of a bird, in the ordinary acceptation of the term, means the collection of more or less strong, more or less elongated feathers which are implanted into the skin of the hinder end of "the body. But evidently this "tail" has no relation to what we mean by a "tail," when we speak of the tail of a beast. Moreover, as we shall soon see, dongated conspicuous feathers, commonly called the tail of certain birds, do not correspond with the tail-feathers which other birds possess. The tail of a beast, for example of a Cat, consists of a firm bony basis surromded with flesh and sinew and invested by the skin. Such a tail always exists in hirds, but it is a very different structure from what is ordinarily called "a bird"s tail."

Most aquatic beasts, and other backiboned animals which
swim, have an elongated powerful tail which is their main aid in swimming; but no bird whatever swims by its tail. Very mayy climbing animals are assisted by a tail which is "prehensile" or can grasp. Some birds (such as Woodpeckers) are aded in climbing by their very stiff tail-feathers. But no bird has a tail which can grasp. No existing bird has a long tail in the sense that a Cat has one. That part of a bird which answers to the tail of a beast is a short fleshy, more or less heart-shaped structure, which in the chicken is olten called the "parson's nose." Into it the long true tail-feathers are implanted, and it also commonly bears on its upper surface, at its root, a peculiar body linown as the oil-yland, sometimes called the uroppynial ylamid or the detodochon. The structure of the bony basis of this true tail must, of course, be reserved for descriptionalong with that of the restof the endoskeleton. Here we are alone occupied with its extorior and its epidermal appendages. In the first place the oil-gland is composed of numerous contorted tubes, which gather themsides together and unite more and more till they open by one or several pores on the surface generally, on a little papilla. These tubes secerete within them a greasy fluid, which exudes and can bo pressed out from the pore of pores. This gland is spectally developed in aquatic hirds, which carefully anoint their feathers with its secretion, the presence of" which canses water so proverbally to "run off" a duck's back." The gland is often surrounded with a circlet of feathers, the presence or absence of which serves as a distinctive character of rarions species, and is by some anatomists considered important enough to define the great orders.

The true: feather-tail is formed by those generally welldeveloped teathers which are inserted into the fleshy tail. These feathers are called poctrices or stocres, and are, as a rule, thoroughly firm and pemareous, though generally the web of the outer side of each feather is narrower than the other. The rectrices are even in number, and there are gencrally twelse of them. This number may, however, be diminished to eight or raised to twenty or four-and-twenty, while the Penguins may have fwo-and-thirty or eren more. When the rectrices are expanded it will be found that the central pair are inserted hichest up (most dorally), one being higher in orgin than the other. The insertion will be fomed to follow on alternatelythe next to the median pair on one side being inserted above the next to the median pair of the other side, and so on. These
feathers may be of very different shapes in different species of birds. When very narrow they are said to be limeer, and when very long and slender they are called fitumontous. Each is termed lencolut, when tapering to the tip from a broader hase. When the feather becomes gradually rery pointed it is called ucute; but if it is suddenly narrowed towards the point it is termed wominutt. The tail of the Woodpeclier shows such rectrices. A feather enlarged at the end (more or less like the heak of a spoombill) is called spatulatt. A immerouct, or spinose rectrix is one in which the rachis projects at its end beyond the vanes. This condition is also sometimes spoken of as spinusi A trmutate rectrix is one seeming to be cut straight off transwersely at its end, while if its temman border is concave, it is said to be incised.

A very fine and curiously developed tail is that of the Lyrehird, most of the tail-feathers of which creature have their larbs widely separated, so that the webs are quite loose. The true tail-feathers mat be rery short, as in the Timamou: or quite rudimentary or downy, as in the Grebe.

To estimate the shape of the tail-feathers, they should be nearly dosed. Then the posterior margin of the whole group of rectrices may or may not appear conceres, when the tail is more or less fietat. If this forking is only minute, the tail is said to be meneminute. Il truly forked it is fureute; it may be more, i. e. douply fortucd, or it may eveu be extremely forked, which has been called forficate.

There may be a median projection with lateral concarities at the tail's hind margin. Then it is said to be a tail clonlly metefincte or dould!! furlod. In the same way a tail which, instead of having an evenly rounded margin, has a median notch with a convex hut rounded margin to the tail on either side of the noteh, is said to he dombly romeder. If the tail ends with a simple, straight, transwere margin it is trencente, ceen, or squetre. There may he a pair of very long projecting feathers, which are then said to he ters-axsited or "produced." If the rectrices shorten gradually and successively from within ontwards, the tail is said to be frothented. If they thas shortent less and lese, they form a cennent, or wedge-shaped tail, and this may hecome acutely cuneate or acute.

The fail-feathers may fold up so as to form a whole, convex above ore on the contrary, a convex below, so as to somowhat simulate the shape of a boat.

These true tail-foathers, or metrices, have their basw curored and protected both above and helow by feathers, which take their origin in the trunk, and thence project hackwads ower the quills and bases of the rectrices. They are generally small and softish fimithers (repectially those beneath the tail). Which tend to complete the conical form of the hinder end of the hody. They are called hetrices, i. co covering feathers on conder, and those above and helow the inctices are respertively dintinguished as the upper and lower tail-coserts. They are always present, but may be reer short. The mper ones generally extend less backwards thain do the mader tail-wenerts. They may, however, take on a very ereat development. as, a!! , in the Peacock, the gorgeons so-called tail of which is mot well atrue feather-tail, but is formed only of clongated upprer taileoverts (ecretrices superiones), which when expanded are hild up and supported by the true (though in appearance insignitiont) rectrices beneath them.

We have now completed our survey of the skin and its appendage - the exosketen-of the axial part of the Thetythe head, trunk, and tail.

It remains to consider the same system of parts as de pelepeed on the two pairs of limhs which constitute the "1/'" meticulur portion of the bird's bodily frame, being appendaces attachend to its axial portion.

The Limbs.

We will first consider the anterior pair of limbe called pectorel, from their situation beside the chest. Thest ... pe...toral appendages" are, of course, the wings.

The Wiags.- All hirds possens wings, though in some they are tery small. Such is the case in the Emen and the Cassowary, but above all in the Λ pteryx. When we speak of the wing of a Bird, we have manly the feathers of the wine bresent to our inamination. This is reasomable, for the feathem are not only the most conspicmons whiects, but the direct asents in offecting flight. Nevertheless, the solid atructure in which they are implanted is of comse no less necessare, it forme the basis and solid part of the wing. This solid structure is mally the arm of the bird, and its distinct component parts correspond with and answer to our own. There is a par: which answers to our uper arm and-in all existing birth-it part
which answers to our fore-arm, these being united by a joint like our elbow. These portions of the arm are further held together by a very clastic and extensible fold of skin, which is of course widest opposite the elhow-joint. Another fold extends from the trunk to the upper arm ; each of these folds is sometimes called a pata!imm. Thirdly, there is a part which answers to our hand, and which is termed the pinion. Within this "hand"or mums-there are, as we shall see when we study the skeleton, parts which represent, more or lesis imperfectly, our first and second (index and middle) fingers, - but they are all enclosed in one solid structure invested by skin, so that $n o$ finger can be externally recognized as free and separate like our own. There is, however, a short and small thumb-or polle.r-which shows itself externally as a separate part. Thus the thumb and fingers (or digits) of the hand are enclosed as ours are when we have put on a pair of boxing-gloves. The thumb is a separate and distinct part of the pinion, but the other digits are enclosed, together with what answers to the middle part of our hand, in one continuous pad.

The relative proportions of the three solid parts of the wing differ in different birds. Thus the upper arm is relatively, as well as absolutely, very long in the Albatross; while in the Humming-birds it is relatively, as well as absolutely, rery short. The fore-arm is longex than usial in the Apteryx, while in the Humming-birds and swifts the pinion is relatively very much elongated.

The feathers which clothe the wing belong to three divisions, two of which correspond to those of the two divisions of the tailfeathers.

There are, first, the effective feathers of flight, which are called iemiges or rowers; and there are, secondly, the covering feathers or tectrices, which invest the bases of the effective feathers of the wing, as the covering feathers of the tail invest the bases of the effective teathers of that part--the "rectrices." The third division consists of a small group of feathers which are implanted on the thumb.

Thumb-feathers.-The feathers of the pollex are a small group which constitute what is called the -17ulu ("little wing ") or the flu spuriu (bastard wing). This little group of feathers is placed on the front and outer side of the pinion, and lies on the dorsum of the wing along its front or outer border.

Remiges.-These feathers are implanted into bones of the pinion and the arm, and belong to distinct categories accordingly. They mainly determine the size and shape of the wing, in conjunction with the development of the solid parts which support them. They are very little developed in the Cassowary and Emen, and are still more rudimentary in the Apteryx. In the Penguins, however, they are peculiarly reduced, being no more in the than so many short scale-like feathers' closely investing the arm, and forming a"flipper." In the Ostrich they are large, but, as every one lnows, soft aud loose, i.e. plumaceous in composition.

The remiges are rery often so formed as to make the wing a structure strongly convex above and concave below-a condition which determines the noise made by Partridges when they rise. They may, however, form a nearly flat surface, though they are generally more or les: concare underneath. The Divers afford an example of short wings with fully developed feathers, while the wings are at their maximum of relative length in the Frigate-bird.

As might be expected from their use, the remiges are the stiffest and strongest of all feathers, being most thoroughly "pennaceous" and coherent in their elements and the rachis always bears a web on either side. Of these the anterior or outer web is the narrower and stiffer, and the posterior or inner web the broader and softer. They vary in number (apart from the rery exceptional forms such as the Apteryx or the Penguin) from sixtern to more than fifty, as may be seen in Humming-birds and Albatrosses respectively.

The feathers are so placed that the softer imer rane of each of the remiges underlies the stiffer external or anterior rane of that next to it. It is now ascertained that, in flight, a certain rotation of the long axis of each large quill-feather takes place, so that the air call pass betreen the feathers as the wing is raised. In the down-stroke they become closely applied, and the stiffer vane of each feather then heips to keep from yielding to the pressure of the air the broader soft rane of the feather external to it. They generally taper gradually and regularly to an obtuse point (i. e. are lanceolute). Sometimes either or both webs are abruptly narrowed, or emoryinute, or they may be in apparance abruptly cut short (timeate), often obliquely so, or with a curved edge (simate).

Primmites.-This term is applied to denote those remiges which are inserted into the pinion (not, of course, into the pollex), and the length of the wing is often defined by the length from the base (or procimut eud) of the pinion to the apex (or distel end) of the longest feather it bears. These feathers are the stiffest and strongest of all, and there are almost always nine or ten of them. If the first, or outermost, is rery short, it is often called a busturel or spurious furimer?, as, ': !/, in the Thrush. The tip of the longent primary constitutes the point of the wing.
secomblaces.-The feathere thas named are those which -pring from the arm. Ther vary greatly in number and in size. They may be extremely short, as in the swilt, or extremely long, as in the Argus Pheasant. There may be only six of then, or their number may exceed forty. It is very often easy to distinguish the secondaries from the primaries by their being less stiff and by a slight difference in their inclination.
such feathers as may arise from the upper-arm bone used to be called Tortarirs or Tartuls. But now all the remiges which are not primaries are termed "secondaries," the inner ones being distinguished as imnemost secomentios. There latter: are gencrally few in number and inconspichous, but may be elonrated and conspicmons, as in the Lark or the Womecock. They are often useful in defining some genera of hirds, as they frequently differ in colour from the other secondaries, and sometimes partake of the tints of the greater coverts.

Scopulars (fig. 14t, 19) are sometimes confounded with imnerunst secondaries, but the latter belong to the series of "remiges," while the former pertain to the series of feathers implanted in what is called the humeral pteryla*.

IVinel-conerts.-The coverts-tectrice-or covering feathers of the wing, differ" from "tail-coverts" in that they strensthen the quills. They are, howerer, like tail-coverts in that they are divided into an upper series (supriones) and an under one (inferiores), and, as has been said, they cover over and protect and strengthen the quills and hase of the "remiges."

Tectrices superiores.-These are the more important, and they are much more complex than those of the tail, as might be axpected from the greater complexity of the parts they cover.

[^13]They are divisibhe into two setr, namely (A) these which spring from the pinion and cover the primary remiges, and (B) those which cover the secondary remiges.
(A) The "phet prinery comits sprine fem the pinion and overlie the primaries. By these it can often be determined how many primarins a Bird has. There is a series of large size, and a second series mostly few in monher and seateely visibh, hemeg corered almost always by the hastard wing.
(B) The coverts of the second category, or the upper secombery conets, mostly spring from the fore-arm, and are divided into there distinct eateguries or franswerse rows:--
 " greater corerts." This catemory includes the lawent and most important set of feathers of all the "upper sicomelary corerts." They form the transverse row which extend farthest down orer the secomdaries, and afford valuahbe charar ters for chassification.
(\because) The medien "pper sicomelury (omerts (ticetrices mediar), or midde coerers, are a transwerse row of smaller teathers which cover wer the hasen of the werater conerts. Their apices the often otherwise directed than those of the latter.

 small rows, which cover ower the basis of the middle coverts and the upper sufface of the wing-fore-arha and fold of skiu, or patasium, attached to it-thence to jts antmpor margin.

The lumercl coverts are a short series of feathers arising from the skin ores the hameras, wery well seen in the Duck. These coverts are very often absint an! when present they may hate much of the appearance oi innermosit secombarios. as in the Duck, where they are very homent conspicuous. It may also, in some cases, be difliculi to distinguish them from "scapulars", hut they take origis from the skin over the
 where it give origin to the scapulars. These two caturories of feathers-scapulars and hanemal conerts, can both be seent very clearly and distinctly in the Duck.
 primary and serondary ones like the "1,tur wint-conests, but they are less important for purposes of classification.
some of then feathets may, however, he distiuguished as
aeillary fictlues, becanse they are nearest to the arm-pit. They lie close to the body at the inner margin of the under surface of the wing, and are generally longer and firmer than the rest of the under wing-coverts. They comespoud below with the humeral coverts above, and may be well seen in the Duck, the Snipe, and the Plover.

C'laus:- ln some birds a claw exists at the end of the thumb; in others one at the end of the thumb and one towards the aper of the pinion or there only. Besides these claws, clawlike structures termed spurs may be borue, one on the side of the pimion: and in one bird, the Screamer (Palemedeat), there are two of them. Such a structure is called a calcar.

The Lels.- We must now pass to the hind, or posterior, pair of limbs-the legrs-which are called petric limbs, or appendages, because they are attached, as we shall shortly see, to a portion of the skeleton called the "pelvis."

As has been said, all birds have a pair of legs, and these organs have a general, essential resemblance to one own lower limbs, having three distinct parts:-(1) the part corresponding to our thigh, (ٌ丷) the part answering to our leg and called the crus, and (3) parts which correspond with our foot, the straight upper part of which is called in Ornithology the tursus.

There is a knee-joint between the thigh and the leye which is like our own joint in its direction and essential particulars.

There is also a joint between the creses and the terisws which roughly answers to our own ankle-joint, but (as we shall see when we study the bones) does not entirely or accurately correspond therewith.

The foot-pes-(using that term as the equivalent to our foot) includes the straight and sometimes greatly elongated segment of the limb called the "tars'sus," and also the toes, or digits, which diverge from the lower end of that segment, thoneh the toes alone are commonly called the "foot."

The foot, using that term in its wide seuse, is of course always a conspicuous part of the limb, while more or less of the leg and all the thigh are concealed by the plumage, or even enclosed within the general envelope of the skili of the trunk. Thus the knee is never extemally apparent, and this circumstance, tore ther with the conspictons ankle and long upper pure of the foot, give rise to popular misapprehensions about the nature of the lower limbs of birds.

The thigh is always very thick. The next segment, or true
leg, is called in Ornithology, as before said, the ermes. It is also thick at its upper part, but tapers downwards, becoming much contracted towards the ankle-joint.

The pelvic limbs vary much in structure, in harmony with the rery different uses to which they may be put in creatures which differ so much in modes of life as do a Hawk, a Swift, a Heron, and a Penguin.

The entire length of the whole limb varies sreatly, being relatively very short in the swift and Frigate-bird, and relatively extremely long in the Stork, the Flamingo, and the Nitt. When the limbs are very elongated, it is the leg and upper part of the fout which are mainly lengthemed. The thigh is always relatively short. The toes may be exeeptionally long relatively, as in the Water-hen, Screamer, and Jacana.

Though in descriptive Ornithology the upper, single, and straight part of the foot above the toes is always, as before said, called the tarsus, the inexactitude of this term will be erident when the internal skelston of the leg and foot is moderstood. It is always more or less slender and cylindrical, and never thick like the upper part of the crus. It may be somewhat compressect, or laterally pressed in. Rinely, as in the Pengiun, it may be much flattened from behind forwards-i.e., decidedly widest in the transverse diameter.

The most rariable part olf the leer is, as might be expected, the foot, and especially the mumber, shape, and dixposition of the digits or toes.

Birds always walk on their toes, or are what is called diyfiligrocke, with the exception of the Penguin, which applies its tarsus also to the gromed, and is thus the only plentempende kind of Bird.

The mumber of the diyits varies from four, which are present in the immense majority of hirds, to two-a number present only in the Ostrich.

The first toe may also be called the hallux and compared with the great toe in ourselves. It has almost always two joints, not including that at its base.

The secomb toe may also be called the index, and compared with that which is next to our great toe. It has always, with two exceptions *, three joints.

The thind toe may also he called the matius and compared

[^14]with our middle toe. It has almost always four joint., but may have but three *.

The form the is comparable with the fourth toe of our foota digit is inith, as analoguns to the tourth digit of the hand, may, at need, he distinguished as the cumeles. It has nearly alwayfive joints, but may have four \uparrow or only three \ddagger.

Our wwn little toe has 1.0 representative in the Class of Birds.

When there are but there digits, it is the hallux which disaiopears. and when as in the 1) strich, another is absent, it is the fromel one. This rale is universal save in the general (ceyce and slagone, where the second digit is defective or hidden ander the - inn, and the Bahber (Chobornis), where the fourth is defective.

Dispmition of the Digits.-Ordiarily birds have three toen fanes! forwards and one, the lullure, tumed backwards. Vers rarely, as in the sivilt, all four aie tumed forwards, when the ballux is the imemost of the four. Tery often two toes are furned tomard- and two backinard-, constituting what is termed a zyyfurtacty/c or yoke-tored foot. Lis this case it is inderally the first and fourth digits which are turned backiwards. In theTrogons, howeter, the lirst and arome toes are turned backwardseand the third and fourth forwards.

When there are obly there toes they all turn formado, sate nn the genns Primides, where the fourth is turned backinathe. Fomettines a dipit is what is called "reversible" or "rersatile "-that is, it can be tumed either way, as is the cand with the fourth toe in most Owls.

The hellena may vary much ini its relation to the other twes. In the first place, it may or may not bee on the same level with them -ther end, serd, and the toes ahways being placed side he side at the bottom of the so-called "tarsus." If it is on the same level with them, it is said to be incumbent. If it is attached to the hinder side of the tarsus above the level of the attachment of the other digits, it is termed deratel, as in the Fow and the Duck. It is generally longer than one or two of the wther tees, and may be the longest digit of all. It is never -o hone when devated as when incombent. It may barely reach the gromme or it may, as in the Petrels, exist in a rudimentary condition.

$$
\begin{aligned}
& \text { * As in the Swift. } \underset{\ddagger}{\ddagger} \text { As in the Swift. }
\end{aligned}
$$

Length of Digits.-Of the three external digits the median one is almost always the longest ; the toes on either side of this are generally of equal length, but if unequal, then, save in rare instances, the outer of the two is the longer.

The connction between the cligits may be confined to the immediate proximity of their origin, when they are separate and distinct, as in the Thrush. The third and fourth toes may cohere for almost their whole length, being in rested by skin as if they were but one toe. This condition is termed symblactyle or anisoclactyle or synurnesious. Examples of this structure are to be found in Kingfishers and Hormbills. The two outer digits may be exceptionally connected in some Fowls and Pigeons *. The digits are often much connected together by folds of skin, or are pulmate. Such Birds are said to be well-footer, as in the Duck. The webs ordinarily connect together only the 2nd, 3rd, and 4th toes, but they may, in addition, connect the first toe with the second-as in the Pelican and Cormorant. Such a foot is called totipalmate. If the webs are short, only reaching about halfway down the toes or less, the foot is semipalmote. The wehs hay have their margins sharply concave or cut in ; such are said to be incisect. The incision may extend to the roots of the toes, so that each digit is fringed with membrane, which forms festoons on either side of it. A foot of this kind is said to be Tobate, and we find such in the Coot and Grebe.

The skin of the pelvic limb is always more or less insested with feathers, but also almost alwars partly bare. The skin of the bare portion is peculiarly conditioned and needs separate description; but the plumage had better first be noticed.

The feathers of the pelvic limb are very different from those of the pectoral one. Ouly by rery rare exception, and as a sort of monstrosity, are long pennaceous feathers developed, comparable with the remiges of the wing. The thigh is always feathered as part of the body-plumage. The feathers of the crus are almost always inconspicuons, but they may be couspicuous from their length, as in the Hawks and some Cuckoos.

The crus is alwars feathered at its upper part, and may be feathered its whole length, as in the Diver.

The tarsus is generally naked, but it may be closely invested

[^15]hy small feathers for its whole length, as in the Barn Owl, some Eagles, and the Gruase, or it may be only partly feathered. The toes are normally feathered also in some Owls and in the Ptarmigan.

Ahnorm ll!!, feathers grow on the feet which resemble the long feathers of the wing. Such feathers may be found on the feet of Trumpeter Pigeons and Bautam Fowls, and structures of this kind are called "boots." These extra feathers are attached to the outer side of the foot, just as the primaries of the wing are to the outer side of the pinion. These fontfeathers have been known to exceed the wing-feathers in length, which the y resemble not only in size but in structure.

The slitin of the hecre prortion of the limb is almost always horny, but mar be somewhat leathery, as, e. !/, in the Duck and most aquatic birds. The epidermal corering is more or less divided into scale-like segments. If these are rery small they are said to be evticmute; if they form largish quadrate segment the part so invested is scutclute; but the tarsus may be invested by ia continuous horny plate in front-or along what is called the motrersium-when it is said to be hooter or gremeel. When the reticulations are in the form of little prominences which roughen the legs, such a corering is !nomulder: and if a sentellate part is so formed as to make the leg rough, it is calle. stariones. Its prominences may be so sharp as to be termed surations. The wrinkled surface of the web of palmated feet is spoken of as cancellated.

Different naked parts of the limb may be differently invested.
The whole naked epidermal investment is named the $f^{m o l} l_{0-}$ thece. It this is divided into many subdivisions, it is said to be s.hizothec ll. The lateral and the hinder surface of the tarsus, or the phente, may be invested with scales or scutellate-a condition termed scutelliplunter-or it may be covered with reticulations. But each lateral surface may be clothed with only one continuous plate, which meets its fellow at the middle of the back of the tarsus, the junction of the two forming a prominent ridge ; such a condition is denominated leminiplanter, and the coexistence of this condition with a continmous horny plate in front of the tarsus forms a podotheca, the very opposite to that termed "schizothecal." By contrast, therefore, it is distinmuished as holutlucal-a " holotheeal podotheca." A tarsus may, howerer, be lamimiplantar and yet scutellate in front, or it may be scutellate in front aud reticulate laterally and behind, or it
may be entirely reticulate. Rarely the tarsus may be "greaved" (continuously sheathed) in front and yet scotelliplantar.

The upper surface, or dorsum, of all the toes-called the acropoctinn-is almost alwars scutellate. Their under surface is in creneral minutely marked, but may develop small wart-like structures-"pads" or tylari-as may be seen in Hawks.

C'uens.-Erery digit of a bird's foot is provided at its end with a horny claw, more or less curred and pointed at its extremity,

Fig. 145.

Diagram of Epidermal Covering of Tarsus and Digits.
". Reticulate form (Plover). 1, Sentellate and? reticulate form (l'igeon), c. Booted or greaved laminiplantar form (Robin). d. Scutellate laminiplantar tarsus (Cat-bird-Mimus carolinensis). $1 t-4 t$. Digits, trs. Tarsus. 3 tel. 3 rd digit from tarsus to end of claw, (After Coues.)
except that the hallux, when in a rudimentary condition, may Ine clawless. Claws vary as to length and strength. They are exceptiomally long and all straight in the Jacanas, enpecially that of the hallux. They are at their maximum of strengith, as well as much curved and acutely pointed, in the Hawk aud other birds of prey. Ther are but little pointed in such birds as the Fowl and the Pigeon, but most obtuse of all in the Grebe.

Claws are always more or less concave beneath transversely as well as in the direction of their length. They may be grooved -sulcate: or ridged-carinate. The inner edge of the middle claw may be dilated and its margin very strongly toothed. It is then said to be pectinated, and such a "comb" is well seen in the Goatsucker's foot.

Spuis or calcars exist, as everyone knows, on the back of the tarsus of the Cock ; and two spurs may exist on each foot, as in the double-spurred Peacock (Polyplectron biculcuratum), or even more as in Itheyfinis. They are sexual characters-only found in the males.

Thus very different types of feet are to be found amongst hirds, according to their habits. The "Scratchers," as, e.!!, the Fowl, have the foot rather thick, the claws short, and the hallux elevated-the "rasorial" trpe. The "Climbers," as, e.!., the Woodpecker, have the foot zygodactyle and the claws well developed and curved-the "scansorial" type. In the "raptorial" trpe, e. \%. the Hawk, we find a powerful foot, with long, curved, sharp, and powerful claws. In the "grallatorial " and the "cursorial" types we find a foot with a minimum power of grasping, and a reduced or elevated hallux and an elongated tarsus. In the most opposite type-that of the "perchens" -the "insessorial "type-there is a long, well-developed hallux, and the other digits are cleft to their bases; while, on the contrary, in the "natatorial "type-the Swimmers-we find the feet webbed more or less completely or else lobate.

Pterylosis.

As before said * the feathers of birds do not usually grow all over the body, but along certain definite tracts, each of which is termed a prernta. These are separated by spaces wherein feathers are not implanted, or apteria.

A few birds, howerer, have feathers implanted all over the body. Amongst these are the Toucam, the Penguin, and the Ostrich. The definite "pteryle" which have been defined are the following :-

The dorsal or spinal pteryla, which extends from the mape of the neck to the tail. Its shape varies greatly in different

[^16]Fig. 146.

Fig. 147.

Ptertle of Dorsal and Vextral Surfacfs of tie Swift, Ciypselue apus. (After Nitzsch.)
Fig. 146. Ventral aspect. Fig. 147. Dorsal aspect.

1. Dorsal or spinal pteryla. 2. Humeral pteryla. 3. Femoral pteryla. 4. Cranial pteryla. 5. Alar pteryla. 6. Caudal pteryla. 7. Crural pteryla. 8. Ventral pteryla.
kinds of birds, sending out branches, bifureating or suffering interruption, as the case may be. Fig. 147 (r).

The ventral pteryla extends from the throat to the root of the tail, and may vary in disposition, as already stated, with respect to the dorsal pteryla. Fig. 146 (8).

The crmin? pteryla, or tract of the head, more or less extensively invests the head and becomes continuous with the dorsal pteryla. (4).

The cundel pteryla, or tail-tract, comprises botle the dorsal and rentral surface of the tail, wherein the rectrices and upper and lower coverts are inserted. (6).

The humeral pteryla, or shoulder-tracts, are constant but small. One crosses obliquely backwards and inwards over the shoulder from the upper part of the upper arm. Fig. 147 (z).

The alar pteryla, or wing-tracts, rum each along the solid part of one of the wings from the upper arm to the end of the pinion. (5).

The femoral pterylx, or thigh-tracts, form two oblique bands, one outside either side. They are rery rariable. Fig. $1+7$ (3).

The crural pterylie, or leg-tracts, cover those portions of the pelvic limb below the knee which have feathers inserted into them. (7).

Downy feathers generally clothe the borly (partially or entirely) independently of the pteryla, and beneath the other feathers distinguished as montour feathers. But down may bee absent altogether, as in the Woodpeckers.

CHAPTER III.

The Interval Skeleton.

HATING now completed our brief surres of the skin and its appendages-the external or exo-sheleton of Birdswe must now turn to that which is ordinarily alone called the skeleton-uamely, the internal or endo-skeleton.

This mainly consists of bone, though, in part also, of cartilage and membrane. The bony substance, or osscous tissue ${ }^{*}$, of birds is rery dense and strong and jet rery light. Their bones are whiter than those of other animals, and are more or less generally permeated with air. In the Penguins, however, none of the bones contain air, while in the Ostrich many of the bones which in other birds contain air are filled with marrow. With one or two other exceptions, the bones of the upper arm and of the thigh always contain air. All the bones, except those of the toes, may contain air-or be pmenmatic (as it is called)-as in the Pelican and Gannet; and even the bones of the toes are pueumatic in the Hormbill, and all its bones are so save the jugal \uparrow.

There are several reasons why it is desirable that the student should pay very particular attention to the study of the internal skeleton.

In the first place, a knowledge of that system of parts which supports and sustains all the others-the bouy framework or skeleton-is most useful, because many of its characters are made use of in Ornithological classification and the defining of groups. It is, besides, the part least perishable, and our only guide to the nature and affinities of birds which can now

[^17]be known to us by their fossil remains alone. The skeleton also bears a close relation to the general external form, and its structure is a guide to the actions and therefore to the modes of life of the living organism of which it once formed the basis and support.

Yarious parts of the skeleton are capable of being moved one upon the other, and to facilitate these motions the contiguous surfaces of such moveable bones are so shaped as to form what are known as " joints."
The skeleton consists of the back-hone, or spine, which supports, at its anterior end, the slull. From either side of part of the back-bone, the rils proceed outirards, and are attached at their other ends to a breast-bone or sternum. All this constitutes the axial part of the eudo-skeleton. The back-bone constitutes the spinal part of the axial skeleton, while the skull forms its cranial portion. The rest of these parts-the breastbone and ribs-together make up the thoracic* part of the skeletal axis. Two pairs of bony girclles are attarhed to the axial skeleton, and each such girdle supports the bones of oue of the two pairs of limbs.

The anterior, or pectoral, limb-girdle is attached to the front of the sternum, and to it the wing-bones are affixed.

The posterior, or pelvic, limb-girdle is much more solidly connected with the more posterior part of the back-bone than is the pectoral girdle with the breast. It forms the sockets into which the upper ends of the thigh-bones fit.

These two bony limb-girdles, with the bones of the wings aud of the lower limbs, together constitute the appemticuta. portion of the endo-skeleton.

The axial sleleton.-As we began by considering the exoskeleton of the head, trunk, and tail before that of the limbs, so we will here begin by first studying the bony framework, or endo-skeleton, of the head, trunk, and tail.

It will, however, be more convenient to defer considering the skeleton of the head, till we have made acquaintance with the hony parts of the trunk and tail-i.e., with the "spinal" and " thoracic" parts of the skeleton.

[^18]The Back-bone, Ribs, and Breast-bone.

From the hinder side of the head to the end of the tail there runs that bony structure already spoken of as the "back-bone " or, as it is also often called, the spincel column. It is made up of a chain of bones placed one behind the other, each being a more or less cylindrical ring, much thicker on one side-the veutral side-than elsewhere. Each of these bones is called a rirtelica, for which reason the term vertebral colum is also applied to the whole spine.

The "vertebre" being thus serially conjoined, the juxtaposed

Fig. 148.

Diagram of a Vertebra, seen in front.
The shaded central part in the middle is the centrum of the vertebra.
D. Diapophysis or superior transrerse process. H. Itemal arch. HC. Hiemal canal enclosed by hemal arch. Hy. Diverging ends of hypapophyses. N. Neural canal enclosed by neural arch. NA. Neural arch. NS. Neural spine. P. Parapophysis or inferior transrerse process. I'l. Pleurapophysis, represented as present on one side only. Z. Zygapophysis.
rings form a long canal called the vertebral or neural canal, because it contains and protects the spinal cord or spinal marrow, the most important part, with the brain, of the nervous or " neural" system. The thickened or ventral part of each vertebra is named the centrum, and the rest of the ring the neural arch, for it is an arch springing by piers from either side of the centrum.

Tarious bony prominences projecting from the vertebra are termed processes. From the middle of the dorsal side of the neural arch there generally arises a prominence called the notrel spine or netrapophlysis, though it is sometimes simply called the spinous prociss. Prominences which jut out laterally from the side of the neural arch or centrum are called trenserise processes. There may be two of them on either side. In such case the superion one is called the chapoplysis or tuberchler transerse process, and the inferior one the parapophysis or capitntar transerse proces. The distal ends of these two processes may be comected on either side by an osseous bridge, which may be prolonged into a process-the pleurapophysis. Two processes may arise, one from either side of the rentral surface of the centrum, and meeting together below form an arch beneath it comparable with the " neural arch "above. Such an inferior areh is termed a lumal aich, and serves to protect and trausmit blood-vessels.

A median process may depend from the middle surface of the centrum or the rentral end of the hrmal arch. Such a part is named a hypocpoplysis, and it may bifurcate laterally, as in the Penguins.

Two other processes generally project forwards and two backwards from the nemal arch of tach vertebra. These four are termed z!!fapophyses of articnlar processes. They are so termed because they serve to articulate adjacent vertebre together. Each articular surface of the anterior pair of zygapophyses, or prezugdmphyses, looks more or less dorsally, or dorssed, and receives upon it the articular surface of one of the pair of posterior zygapophyses, or postzy!apophyses, the articular surfatees of which look more or less ventrally, or ventroul.

Adjacent vertebre are also articulated by the adjacent surfaces of their centra. Parts which thus articulate have interposed between a membranous bag, or synovial membrone; so called because it contains symoria, or joint-oil-an arrangement which facilitates morement and diminishes friction. Adjacent rertebre may completely unite with each other or with other parts of the skeleton. Such parts are then said to be anchylosed together.

The vertebre are divisible into four categories:-(1) Those of the meck, or cervical rertebre; (2) those of the trunk, or donsal vertebra; (3) those intermediate between these and the
tail, or sacral rertebre ; and (t) those of the tail, or comitul vertebre.

The cervical verternow vary in number from eight or nine, as in the sparrow, to twentr-three, as in the Lwans-sometimes, it is said, even twenty-four. The usual number is thirteen, or one more or less. An ordinary cervical vertehra has only a very short nemral spine. Each centrum is shaped somewhat like an hour-glass. Anteriorly it is concave from side to side, and convex from above downwards; posteriorly the reverse. Thus either end is saddle-shaped, but the saddles being differently disposed, each saddle-shaped surface of a vert bra fits admirably into that of the vertebra it adjoins both in front and behind. Vertebre the centra of which articulate together in this manner are spoken of as heteroccelons. The transverse processes of either side are connected by a bony bridge (the pleurapophysis), whence a strliform proces projects backwards. Thus the series of these arches on either side forms a lateral canal which shelters blood-vessels, and is called the dirtebrarterial canal. The bony-bridge, with its strliform process which thus encloses it, is at first a separate bone, and is called a cervical ril. Those of the more posteriorly sit uated cervical vertebre are the more prolonged, and the last is a very long rib-like bone. It always, howerer, ends freely, and does not join the breast-bone. The first two vertebre differ from all the others and from each other.

The first of these, the atlus, is a short ring of bone. The anterior surface of the reutral portion of the ring presents a cup into which the hindermost portion of the base of the skull is received. Above this there is a lateral prominence on either side jutting inwards, and the apices of these prominences are connected by a strong membranous cord, or liyament, which separates off the lower part of its cavity from the larger cavity above it for the spinal cord. This ligament may become ossified, and then the vertebra forms two superimposed rings, greatly differing in size.

The second vertebra is called the axis rertebra, and bears a strong peg-like process on the front of its centrum. This is called the odontoicl process, and it is received into the small ring of the atlas just described as bounded ahore by a ligament. Round it, as on an axis, the atlas turns-bearing the head with it --a circumstance which gives its name to the vertebra, which is also known, from the process it bears, as the Os odontoideum.

The cervical vertebræ are the most moveable, and are so formed as to produce by their junction that sigmoid flexure of the neck before described *.

The dorsal vertchice are rery much less moveable, and generally some of them are anchylosed together. They are usually about seven or eight in number, but there may be only five or as many as eleven. They are very different in shape from the cervicals. They consist of the first vertebra which bears a jointed rib directly articulating with the breast-bone, together with all the vertebre behind it to which ribs belong in whatever way such ribs may terminate at either end. When we consider the dorsal vertebre with the ribs attached to them, we see at once the rib-like nature of the cervical ribs-the hiudmost of which is very much prolonged, though it does not attain the breastbone. Each such vertebra is, generally, shorter than a cervical vertebra, they are also broader as seen dorsally, but their centra are much narrower from side to side than those of the cervical vertebre, being compressed so as to form a median ventral ridge. Above, they bear high, broad, and thin neural spines in the form of squarish plates, which very often become anchylosed together.

There is a broad upper transserse process-" diapophysis"to which part of the rib (called the "tubercle") is attached, and there is below it an articular surface for the proximal end of the rib (called the "head"), which surface may be taken to represent the lower transverse process-" parapophysis "-of the cervical vertebre. The centra articulate together by saddleshaped surfaces in all existing birds save the Penguins, in which, from the third dorsal backwards, each centrum exhibits behind a hemispherical cup, into which is received a hemispherical ball belonging to the anterior surface of the centrum of the vertebra next behind it. Such vertebre are termed "hollow-behind" or opisthocoelous.

There are often median inferior processes or hypapophyses, and these may bifurcate distally, as in the Penguin and Diver.

The sacral vertelme of birds are very numerous. They constitute what is called the sucrum, and it is a very extensive structure. A "sacrum" is that part of a vertebral column where the vertehre are anchylosed together in order to form a firm point of support, or fulcrum, for the hinder or pelvic limbs.

[^19]It does this by affording attachment to a bony girdle-called the "pelvis"-from which the lower limbs are suspended.

The sacrum of a bird, being so extensive, includes more vertebre than does the pelvis of any beast or reptile, and we may distinguish three parts in it:-
(1) A part made up of rertebre which may be taken to represent vertebre of the trunk, which have been ahsorbed by it. The vertebre which form this part mar be called lumbiosacral*.
(ㄹ) A part which may be taken to be especially sactal, or the "sacrum" par excellence. Its vertebre are the true sacrul ones. (Fig. 149, s, 9, \& 10.)

Fig. 14%.

Ventral Aspect of Sacrum of Young Ostrich.
1-12, Centra; d-d ${ }^{4}$, diapophyses of corresponding vertebrax; $\eta^{1}-p^{11}$, parapophyses of corresponding rertebrat; dp, conjoined dia- aud parapophyses of the vertebra marked 11.
(3) A part made up of vertehre which mas be taken to represent vertebra of the tail, which have hean absorbed into the sacrum. The rertebrat of this region are termed uro-sacoul.

The number of vertebrae thus anchylosed together varies from a dozen or eleven to thirteen, which is about the average, up to twenty.

The whole sacrum is an elongated struct ure somewhat spindleshaped, and is compressed between those bones of the pelvis

[^20]each of which is called an ilimm-one of them abutting against its whole length on either side.

Looked at on the ventral surface, there is a continuous median bone-made up of the centra of the anchylosed vertebre -which is narrowest towards the anterior and more posterior parts of the sacrum, and is somewhat broad and flattened towards its middle from before backwards. Transverse processes project outwards conspicuonsly both in front of and behind this median part, on cither side of which no such prominences are conspicuous, s.) that a depression or hollow appears between that median part and the ilia beside it. This hollow receives and shelters a portion of the kidney.

The most anterior lumbe-steral vertehre show well developed diapophysial (higher) transrerse processes, which become gradually augmented, from before harkwards, by parapophysial (lower) transverse processes joined with them, and all these abut against the iliam. There may be from two to five or more of these vertebre. (Fig. 149, 1-7.)

The true suctal vertehre are those without conspicuons parapophysial transrerse processes, though they may be represented hy reire short blunt processes, whereof one projects from the front and another from the hinder part of the side of each centrum.

The "diapophyses" are in the form of lateral plates which pass outwards, one from either side of the nemal areh, to anchylose with the ilium against which they abut. There may be from two to five of these vertebre.

The wo-conctul vertebre are plainly distinguishable be their conspicuous slender lateral processes, which are directed outwards, hackwards, and upwards, and the first three or four of them are for a time mited he suture " with their centra, so as to seem more or less distinct in nature. They recall to mind the pleurapophysial processes of the cervical vertehre, which are, for a time, distinct and separate bones. As the latter are termed cerrical ribs, these sacral amexed lateral parts may be called sectoral rils. Besides these, the uro-candals give ont phate-like diapophysial processes. The whole series of lateral processes, whereof those just described are the most auterior,

[^21]become shorter as we proceed backwards, and ultimately srow more like those of the hindmost lumbo-sacral rertebra. There may be from five to eleven uro-candals, as in the Ostrich.

C'aulal Tertcoro.-These are all the vertebre posterior to the sacrum. They are sometimes called coccy!tect, because the y answer to that terminal part of the spinal column in man which is called the coccyx. Almost all existing hirds have more or fewer-three to ten-of the terminal candal vertebra anchylosed together into a solid mass called the "plonghshare bone," or m!!!pstylc*. In the Penguin this part is shaped somewhat like a man's wooden leg, and is useful for sustaining the body in the upright position the Bird assumes when on land. sometimes it expands below into a hroad diseas in the Woodpecker. It supports the Heshy tail with its rectrices and oil-mland. In front of the pygostrle are the free caudal rertebre, which are mostly about eight in mumber. They have spinous and transterse processes and, at least the hinder ones, develop a hrpapophysis which may bifurcate. In the Rhea all the caudal rertebre are distinct, but they are exceptionally imperfect in their formation, none having transverse processes, and only the first five, or sometimes only three, have complete neural arches, which become smaller and smaller from the fir-s caudal vertebra, backwards.

The thoracic part of the axial skeleton consists, as before said, of the ribs and breast-bone.

The Ribs.-Having alread? noted what are called cervical and sacral ribs, it remains but to consider those which are related :o the dorsal vertebræ.

Rihs belong to two categories:-(1) Thuse which are dorsalls placed and are articulated (save by the rarest exception) with the rertebral column, on which account they are called moteboul vilis. (2) Those which are rentrally placed, and are articulate below with the breast-bone or "sternum," on which account they are called st, mal ribs. Each vertebral rib articulates at its lower end with the upper end of a corresponding stermal rib, except the two or three hindmost, which may end freely, neither being connected with a sternal rib nor joining the sternum.

Fectedral rits.-Of these there are commonly about half a dozen on either side, though there may be nine, as in the Di"ir.

[^22]The first one joins the sternum by the intervention of its rorresponding sternal rib. All such ribs are called true ribs. Tertebral ribs which do not reach the sternum are termed fulse or flurting ribs. Ordinarily the last sternal rib joins the sternal rib in front of it instead of the sternum. Very rarely, as in the Diver, the last rib floats at either end, being connected with the vertebral column by membrane only.

There are usually five " true " ribs, though there may, as iu the Rhea, be but three. Ribs are usually elongated narrow tructures, having considerable spaces between them, though in the Apteryx they are exceedingly broad.

Each vertebral rib joins its sternal rib at a marked angle open forwards, and a synovial membrane is interposed between the ends of each conjoined rertebral and sternal rib. This facilitates motion, and enables the angle just referred to to be made more or less acute, according as the breast-bone (to which the sturnal ribs are fixed at their lower ends) is drawn up towards the back-bone, or the reverse. These movements are most important to a bird, as it empties its lungs by drawing up the breast-bone, and so contracting the body-cavity in which they lie-and fills them by depressing it, and so causing air to rush in and fill the racum which thas tends to be formed. To the hinder margin of all the vertebral ribs except the last or the last two or three, a bony process is almost alwars annexed. called the uncinute process, which projects upwards and backwards. These processes may he anchplosed to or moveably articulated with the rib, or they may be absent, as in the IIomed Screamer, Petameden cornutu (tig. 46), and in its allies the Chaja Screamers (Chauna).

Each vertebral rib ends superiorly br dividing intotwo branches, the upper branch of which is called the "tubercle " of the rib, or turberchlum, and articulates with a diapophysis. The lower branch is called the "head and neck" of the rib or conpitntum. and articulates with a parapophysis or parapophysial surface. It is the fact of these articulations which has caused the diapophysis and the parapophysis to be respectively called the "tubercular" and "capitular" transverse processes as hefore stated*. The rertebral ribs increase in length from before backwards.

The sternal rits are shorter than the rertebral ones. Thes
may expand more or less from above downwards at their ends, becoming compressed from before backwards, where they join the sternum, as is well seem in the Ostrich, where each such elongrated articular surface presents two superimposed articular cavities for its junction with the breast-boue. The sternal ribs increase in length from before backwards.

The sternmm.-This is a very variously modified and characteristic part of a bird’s skeleton, the several forms it assumes helping to define different groups of birds. Its great size and the prominent median ridge or "keel" (which must be known to everyone who has carved a fowl) stand in close relation to flight, since the principal use of its great size is, as we shall see later, to provide sufficient space for the insertion of the muscles which both raise and depress the wing. In some instances, as in the swan, the keel is much expanded and hollow and the windpipe makes a coil within it. The sternum of a bird answers to much more than our breast-hone, but might be represented in us by an imaginary extension of our sternum into a great sheet of bone passing downwards beneath part of the muscles of the abdomen or belly. It is a large continuous bony structure more or less convex ventrally both transversely and from behind forwards.

The Bird's sternum consists, in fact, of:-(1) An anterior part, into the sides of which are set the sterval ribs while its front margin affords a firm implantation to two bones-called "coracoids"-which mainly serve to support, as two fulcra, the anterior or thoracic limbs; and (2) a posterior portion which may be variously formed as follows:-It may be very short and broad, as in the Λ pteryx. Its posterior margin may be entire and obtuse, as in the Emeu; or eutire and acutely prolonged, as in the Cassowary; or entire except that it has a short median motch, as in the Rhea; or with a short median prominence and two lateral ones, as in the Ostrich; or with a very long median one with two lateral notches on either side of it, as in the Common Fowl; or its posterior margin mar be transiversely continuous, while a little in front of it there may be two racuities side by side, or tive in a transverse series. Each such racuity is called a fenestrol or a fontenclle.

A sternum which has neither notches nor fenestræ is called entire, and, as just said, it may be simgle-notcheed or doublenotched, or it may be unifenestrate or bifenestrate.
lu the overwhelming majority of birds there is a keel, whence
they are called Carinate birds. A keel is wanting, or more or less rudimentary only, in the Ostrich, Rhea, Emen, Cassowary, and Apteryx, in a single kind of Parrot, a peculiar Raillike bird (Notornis), and in the singular Opisthocomus *, amougst existing birds.

The lateral part of the sternum which receives the ribs, generally extends forwards on either side into a more or less marked prolongation called the costul process. From the middle

Fig. 150.

Side View of Thorax of Fowl.
k, Keel of sternum ; m, middle xiphoid process; i, internal lateral xiphoid process ; e, external lateral xiphoid process ; r, rostrum or manubrium; c, costal process; h, hypapophrsis from middle of rertebral centrum; a, appendage from ribs, or uncinate process.
of the anterior margin of the sternum-which is almost always convex-a single process called the rostrum or manubrium may project forwards and may bifurcate.

On either side, between this and one of the costal processes, is the coracoid groove. Sometimes (as in the Hoopoe) the median anterior part of the sternum is perforated to receive processes from the bases of the coracoids. Very rarely, c.g. in

[^23]the Apteryx, the anterion margin of the sternmm is strongly concave. It is slightly so in the Rhea.

The median process extending posteriorly is called the mithlle didheid process, and if there is a single backwardly projecting process on either side of it that is called the lutercal riphomiel process. If, insteal of one, there are two such processes on either side of the "middle xiphoid" process, then the more extermal process of each such lateral pair is termed the cot, rmel lateral aiphoid process, and the other the internal lataral diphoid process.

Other names have been imposed on parts of the sternum. Thus the median part which supports the keel has been called the lophosteon; the anterior lateral piece which receives the ribs has been named the plewrosten; and the part on either side which forms the single or double lateral xiphoid process has been distinguished by the term metosteon.

The hinder end of the keel and the part bearing it may remain more or less cartilaginous, as we see in the Fowl.

The Skull and its Appendages.

The Cicamial Slicleton is made up of three parts, separalle by mere removal of the soft tissues. These are (1) the skull with the upper jaw, (2) the lower jaw, and (3) the bones of the tongue or the os hyoides.

The Skull consists manly of a rounded bony box, the cranium proper, containing the brain, with a hole behind through which the brain and the spinal marrow become continuous. The skull also affords protection to the organs of sight and hearing. The latter organs are enclosed within the substance of the lower, himer part of the skull-wall, near a conspicuous exterval opening which leads towards them. The organs of sight are sheltered and partially enclosed behind and above, by the bony framework of the antero-lateral and anterior parts of the braincase, the roof of which-or fromtal part of the skull-projects forwards and also outwards over the bony orbits, or large lateral concavities for the reception of the eyeballs. From the front of the base of the brain-cave a long tapering and pointed process, the rostrom, extends forwards. A thin vertical plate of bone ascends from this rostrum to the roof of the orbits, between which it may, or may not, form a complete, vertical, auteroposteriorly extending partition or septum.

To the eranium thas underwood, the bone framework of the fiece is anteriorly ammext. It consists at its most anterior cand of a solid cone of bone called the promarilla-the apial portion of the upper bony jatw-which is attached to the skull behind hes six long, more or less slemder hars; but not all these are parts of the premaxilla. One of these is median and superior: one is median and inferior: two are external and lateral (one on each side of the skull), and two are jnferior and intermediate-one on each side of the median inferior bar. These six bars form the framework of the face.

Attached to the side of the cranium, just behind the orbit and in front of the extmal opening of the bony ear, is a very irresularly shaped moveable hone called the os functivetum.

The conical apert of hone- which really consists of two homes (premenville) anchylosed and united in one-extends backwards in three diverging branches: one superior and two lateral. The superion branch constitutos the medien and superior bar of the six bars just enumerated as making up the framework of the face.

Each of the two lateral luanches of the premaxilla forms a common hase whence one of the two external and lateral hars and one of the two inferior and intermediate bars, ahove mentioned, hoth take origin and thence project backwards.

Each adermal and luterat bete of the face is an extremely slender one, which passes hackwards. from the latemal branch of the premaxilla of its own side, to abut against the os $I^{\prime \prime \prime}$ (1dratum. This very slender har is made up of three piecos, whereof the more anterior is called the maxilla, the median
 external and lateral har is sometimes called the zu!tume.

Each iuferior and intermetliete liar of the face is an elongated but less narrow piece of bone-called the palatine-which passes backwards and inwards from the lateral branch of the premaxilla of its own side, to alnut-almost always-against the side of the root of the "rostrum." From the sides of the rostrum, just behind its normal junction with the palatines and from the palatines themselres, two other elongated bones called ptertypoids extend outwards and backwards to articulate with the quadrate bones. They may, as in the Ostrich, proceed outwards, not from the side of the rostrum, hut from a more posteriorly situated part of the base of the skull. Thus each quadrate boue is embraced between the end of a pterygod
bone (which articulates with the immer aspect of the quatrates) and the end of a puadrato-jugal bone (which articulates with the outer aspect of the quadrate).

The median rend inferion ber of bone is the most irrernlar in form and altogether the most inconstant of the six. It is formed ot a bone, called the vomer, generally single, but which may he double (two side by side), extending from beneath the anterion part of the rostrum, forwards towaras the middle part of the premaxilla, with which it is oftel comnected by soft tissue only.

The two organs of smell are situated one on either side within the facial part of the skull, being sheltered and more or less protected by the bony framework of the bill. A scalelike hone, called the mesal, roofs over the hinder part of eadh nasal cavity, and forms the himder margin of the masal aperture. This bone consists of a posterior body and two forwardly extembiner and diverging limbs, the augle between which may be more or less acute or may be romded. When it is romeded, and a line, joining the most backward point of the maresin of the nasal of one side with that of the other, passes in tront of the hindmost end of the median backwardly extending branch of the premaxilla, such a nasal is called holordimel. It the ample is acute, and the same transverse line does not pass in front of the hindere end of the median beanch of the premaxilla, then such it nasal is called schizorkimul. Extending ontwards on cither side of the median, ascending branch or process of the premaxilla, axternal to each mazal, amother bone called the luchr:mme is placed at the front marein of the orbit. Within it is a bone, bommding the orbit in front, called the laterel ethemoil. The auterior part of the interorbital septom is called the merlens ethmoid. It the hinder marsin of the orbit there is a more or less prominent process called the postfiontal.

Returning to consider the cranium proper, or brain-case, it may be noterd that the hole mentioned as permitting the junction of the brain and spinal marrow is called the fordemen mu!n,m,. It is also called the ocripitul forcemen, because the most posterion region of the slull is called the "occipital" region. Immediately beneath the foramen magnum is a spheroidal prominence which fits into the depression on the front of the atlas vertebra already described. This prominence is called the occifital combly. The kones which enclose the internal ear are called periotic, but they are not separate from the parts of the
cranium which adjoin them *. The median part of the skull above the occipital foramen is called the suprecocipitel, and the parts on either side of that foramen are termed the ex-occipituls.

The hind r^{r} part of the roof of the cranimm, just in front of the supra-oceipital, is formed by two bones (not to be distinguished by any line of separation) side by side, called parietels, and in front of these is a pair of frontuti, similarly anchylosed toget her and to the parietals.

The middle of the hindmost part of the floor of the skull is termed the busi-occipital, and immediately in front of this is the bresisphencid, in front of which, again, the " rostrum " (hefore described) projects forwards, and is, therefore, called the splumsidul rostrm. Behind this, and beneath the basi-occipital, are two medianly conjoined plates of bone called the busitemporals.

The periotic bones-or "periotic capsule" -enclose the organ of hearing. An aperture on the external surface of the skitll, which is opposite to this capsule, is the opening of the ear, and is called the mutus cuntiturius cintormus. The nerve of hearing, "auditory nerve," passes from the brain to the ear through a foramen on the imer wall of the periotic capsule, which foramen is called the matus curtitorins intermus.

The lateral surface of the cranium above the periotic capsule is called the stuctmosel, and it may develop a forwardly projecting process. In front of the perivtic bone, the side-wall of the cramim is formed by a bone called the alisphenoir.

In front of the alisphemoids-and at the hinder part of the inter-orbital septum is a small Y -shaped bone. The median lower and single part of this is called the presphenoid, and its lateral upward branches the orbito-sphenoids.

A pair of nerves called "optic" go from the brain to the eyehalls, and pass out at an opening rather low down, in the middle of the front of the cramial box. This opening is divided into two hy the hinder end of the inter-orbital septum, and each such division is called an optic fortmon. The nerves of smell pass forwards under the roof of the orbits, through a foramen in front of each orbit between the median and lateral ethmoids. This aperture is the olfuctor? formene. A third important

[^24]foramen, called the firamen orche, is pierced in the alisphenoid. It trausmits the third branch of the fifth pair of nerves.

Beneath the sphenoid behind its rostrum is the opening of a passage called the enstuchian tuloe or comul-which bifureates as it passes backwards to the bony cavity of each ear; but the two tubes may open separately on the under surface of the skull. Further hack on either side is the opening of another canal, which transmits an important blood-ressel called the carotil * artery. These parts are bounded below be the bons plates

Fig. 151.

Side View of Fowl's Skull.
a, Surangular bone of mandible ; ar, articular bone ; d, dentarr ; f, frontal ; j, jugal; l, lachrymal; me, median ethmoid; $m x$, maxillary bone; p, parietal; pf, post-frontal process; pt, perygoid bone ; pri, premaxilla; q, quadrate bone ; qj, quadrato-jugal ; sq, squamosal; v, vomer.
called "basi-temporals." The nerve which moves the tongue, the ninth or "hypoglossal nerve," passes out through the basioccipital, and the nerve called "vagus" makes its exit from the skull more externally and a little anteriorly to the former. A little more anterior still, is that hinder opening of a caual for the carotid artery just mentioned.

Part of the interorbital septum and more or less of the median partition between the nostrils may remain gristly or cartilaginous. In the very young condition the skull is entirely formed of membrane and cartilage, and when the bones begin to form they are numerous and distinct, but ther mostly soon

[^25]anchylose, or ossify, together, as will be further mentioned under the head of "Development."

The conditions above described being those common to the Class, a few of the more important rariations in the form of the bones of the skull may now be noted.

The 7achoymal is sometimes indistinguishable from the adjacent prefrontal. It may be greatly elongated and even unite with the postorbital process, thus forming, with the help of the other bones, a complete ring round the margin of the orbit.

A bony bar may even extend between and mite the postfrontal and squamosal processes, as in some Parrots.

The musal bones, in other instances, may be completely anchylosed with the lachrimals, as in Opisthocomus.

The vomer is generally single, but may be double (side by side), as in the W oodpecker. It may be more or less obsolete, as in the Pigeon and Duck; or large and broad, as in the Tinamou; and it may be deeply cleft behind and abruptly truncated in front.

The maitla may vary much as to size, and generally sends inwards a process, or plate, of bone called the maxillo-pulatine process (fig, $152, m^{2} p^{\prime}$), and this may be of a spongy nature. It may unite with its fellow of the opposite side, or mar be not ouly distinct from that, but from the romer also. Each pectutine mites with the premaxilla, either by bony union, suture, or by a flexible joint-as in Parrots. In passing to this junction it trarerses the rentral side of the just mentioned process of the maxilla. Instead of directly articulating with the rostrum posteriorly, it may be separated from it by the romer, or, as in the Ostrich, pass back directly to the pterygoid, hardly even approximating to the rostrum.

The ptery!gid may, as in the Ostrich, pass outwards and backwards to the quadrate, not from the palatine and the rostrum, but from the palatine and a process of the basisphenoid behind the rostrum. The processes with which the ptergoids articulate, whether such processes proceed from the basisphenoid or from the rostrum, are known as busipteryyoid processes.

These varying conditions of the bones of the skull need separate description wheu the characters of separate groups of birds come to be noticed. It may be well, howerer, here to note estain terms which have been applied to some leading modifications of the parts of the facial skeleton of Birds. Thus a skull
in which the palatine and maxillo-palatine processes remain quite separate from the romer (which tapers anteriorly), so that there is an antero-posterion cleft in the skull on either side of it, is called a Schizoynulhous or "cleft" skull. Such a condition may

Ventral View of the Skull of a Raven (after Oates).
 q, quadrate ; b.sph, basi-sphenoid; sph.r, sphenoidal rostrum. Behind the basi-sphenoid is the large oecipital foramen or forctuen magnum, at the middle of the front margin of which is a rounded prominence, the occipital condyle. The foramen magnum is bounded on each side by a lateral occipital bone, or exoccipital.
be seen iu the Fowl. A skull in which, on the contrary, the maxillo-palatine processes form a continuous transverse ossification is called a Desmognathous skull, and the Duck's will serve as an example. A skull wherein the maxillo-palatines
remain separate from each other and from a romer which does not taper, but is broad and truncated anteriorly, is distinguished as an Eblithoynctlous sliull, and such a one exists in the Sparrow and the Raven (fig. 15:5), A Dromurognathous skull is one wherein the palatines and pterggoids do not join the rostrum, but are separated from it by the vomer, or each pterygoid articulates with a lateral outgrowth from the basi-sphenoid.

The bone's of the face are more or less moveable, as will be explained shortly.

The lower jucu is formed of two lateral branches or remi, which anchylose together anteriorly where they meet at what is called the symphysis. The hinder end of each ramus is expanded and presents above a concave articular surface for junction with the quadrate bone. Often a process projects backwards beyond, this is called the angle or posterior anguler process or posterior a'ticulur process. This may be upturned at the end, i. e. recervecl, or it may be abruptly terminated or, as it is called, be trmatater. Another process generally projects inwards from the articular surface. This is called the internal angular process. Another process may project upwards in frout of the articular surface, and such a structure is termed a coronoid process.

Each half of the mandible is made up of five bones.
In front is the dentar?y, next comes the anyulur with the surampular above it outside the articular process, which is formed hy the articular, while on the imner side of the ramus towards its middle is a small bone termed the splemict. There is ofteu a vacuity or fontanelle towards the middle of either ramus between the dentary and the angular and above the splenial.

Ther Morements of the Juns.- 'I'he lower jaw of the bird moves substantially as does our own, but the upper jaw is to a greater ou less degree moveable also. The delicate bony bars which connect its solid apex with the cranium are to a certain extent clastic, and that apex tends to be elevated by the mere action of opening the beak. For when the beak is opened and the lower jaw lowered, pressure is therehy exerted on the quadrate hone, which is almost always more or less moreahle. Conseruently when it is pushed formards by the depression of the lower jaw, it simultaneonsly pushes forwards on each side the quadrato-jugal bar, or "xygoma" (which mites posteriorly with the quadrate externally), and also the pterrgoid (which mites with the quadrate on its imer side), and, through that
bone, the palatine is also pushed forward. These simultanens formard thrusts, bend the apex of the upper jaw slightly upwards, flesing the skull where the nasals and lateral ethmoids join the frontals. But this movement of the upper jaw is very much more extensive in the Parrots, where a regular joint extends across the skull just in front of the frontals, and facilitates that extreme mobility of the upper part of the bill, which is so evident when a Parrot eats.

The Os heqoides or II!oid. -This curionsly shaped bone consists normally of a central portion formed of two ossicles-one in front of the other-and of two pairs of slender and more or less elongated branches-called "horns" or cornme. The front part of the hood lies between and below the rami of the lower

Fig. 1:53.

Os inyoides of a Crane.
b, Basi-hyal ; g, glosso-hyal ; gc, gc, greater cornua or thyro-hyals; $l c$, lc, lesser cornua or cerato-hyals; u, urohyal.
jaw, with its cornua extending hackwards and more or less upwards behind the head. It is entirely discomected with the rest of the cranial skeleton save by solt structures, except that sometimes (als in Troodpeckers) the apices of the comna are applied to one side of the skull beneath the orbit or within the nasal opening.

The posterior of the two median bones is called the brisihyal and is generally short and thick, but is sometimes slender ; the anterior one is the glosso-hyal, and lies within the tongue. A bony process which often projects, tipped with cartilage, backwards from the basihyal is called the uro-tyal, and may be a distinct bone.

To either side of the front part of the basi-hyal a styliform bone is generally articulated, and may be short or more or less elongated. This and its fellow of the opposite side constitute the "lesser horns," lesser cormue, or cormicula, or cerato-hyuls. A
much longer, and segmented, pair are attached, one on either side, to the hinder part of the hasi-hyal, and these are called the "greater horms," "frecter cormue, or thyro-hyals. It is these which are so prolonged and so singularly fixed in the Woodpeckers, where ther serve as a spring to help the darting forwards of a spear-like tongue borne at the end of a long and slender basi-hyal.

The Limbs.

The Apmorticuter Shectem.-This, as before said *, consists of two limb-girdles, each supporting a pair of limbs-one thoracic, theskeleton of the shoulder or shomelder-yidelle, the other pelvie, the skeleton of the hip.

The thonectic limbl-giodle-which is also called the scetpelter arch-is firmly attached, as before said, to the ventral portion of the thoracic part of the axial skeleton, namely, to the anterior end of the stemme, where it is fixed into the grooves there situate. It has no other councection with the axial skeleton. The girdle consists of three parts or elements on either side, and the bone of the upper arm--the proximal bones segment of the limbs-is articulated to two of these three elements at the point where they meet. These three elements are termed respectively the conacoid, the cluniche, and the scapula.

The girdle is actually completed below by the junction of the two lateral portions of the clavicle.

The Condeoirl.-This is a bone which is not only invariahly present, hut is the strongest and most important oue of the thoraci(limb-girdle. It is that bone which at one end is fitted into the groose of the sternmm, while at the other it is the main support of the bones of the wing. Its size is directly related to the use of the wing, and is immense in the Penguin, which has to exert so much force with its wings, and which emplors the motions of flight in the denser medium of water, as this bird may be said to fly submerged. It is a straight, stout hone, more or less expanded below for its implantation in the stermum. and bifurcating at its upper end into two processes which mite with the other elements of the "scapular arch." ()ne of these, that which joins the scapula, presents at

[^26]its upper end a small concave surface, called the artemot?, into which tits the upper end of the bone of the upper arm or ront of the wing. The other division is called the clavicular process, because it articulates with the clavicle.

The coracoid is not represented by any distinct bone in ourselves, but only by a cursed process jutting out from our hade-hone. This has been compared to a crow's heak, whence it was named "coracoid" proceses, and this has led to the name bestowed on that bone of the bird which corresponds with this process in ourselves.

The sampula or blulte-bom is another constant element of the limb-girdle, which has receised from it the demomination of "scapular" arch. It answers to our "blade-bone," but is rery different in shape, being a long, narrow, curved bone flattened

Fig. 1.1.

Shoulder-girdle of a Bird (after Parker).
c, Coracoid (its lower end abuts against the sternum-here remored) ; ci, the clavicles (merrythought); sc, the scapula-the rounded glenoid surface, for the head of the humerns, is indicated in the scapula close to the junction of the latter with the coracoid.
from without inwards, like a small bony wabre passing hackwards over the ribs but quite detached from them. It is, however, rather broad in the Pencuins. At its lower end the scapula may be said to bifurcate: part of it forms a concare glemoid surface which unites with that so mamed in the coracoid, to form the "glenoid cavity" for the reception of the upper arm-bones. The other bifureation forms a process called the neromiul process, which gives attachment to the clavicle.

The scapula may anchylose with the coracoid, as in the Ostrich. In that and a few other Birds the long axis of the scapula may be nearly in a line with that of the coracoid, but in almost ail other existing species they make an acute, right, or only a rely slightly obtuse angle.

The claricle of each side usually anchyloses below with its fellow of the opposite side to form a single more or less V-shaped bone called the fiurolum or "merrythought." It is the least constant of all the elements of the shoulder skeleton. It may be entirely absent, as in the Apteryx and some Parrots: or it may be medially divided, as in the Emeu and some Parrots and Owls.

The furculum may anchylose with the manubrium of the steruum below and with the coracoid element above, as in O_{P} pisthenomus, and in some birds it anchyloses to the keel of the sternum and also at the shoulder.

Usually each half is expanded where it joins the coracoid and scapula, and such expansion is called the epictectiun. Each half may he also expanded (as in the Fowl), where the two meet together in the middle line, and this latter expansion is termed the hypocleidium.

The clavicles, or two halves of the furculum, are generally curved in two directions-convex outwards and convex forwards. They serve to keep the shoulders apart-keeping the coracoids apart during the downstroke of the wings-and their strength and firmness are in direct relation with the powers of flight or equivalent action in water. Thus they are very large in the Penguin and immensely powerful.

Where the clavicle, coracoid, and scapula meet tngether they leave between them a foramen which, as we shall see, has an important relation to the muscles of flight *.

A rery small bone or ossicle, called the scapmla acesseria or humero-scopulate, is generally present at the outer side of the shoulder-joint.

The slicleton of the wiuy consists of a single bone, called the " humerus," in the upper arm ; of two bones, named reapectirely the "radius" and the "uha," in the lower arm, and of the bones of the pinion. These last-named bones answer to the bones of our wrist, the middle part of our haud, and some of those of our thumb and fingers.

The humerus, or bone of the upper arm, is alwars a more or less elongated and cylindrical bone, expanded at either end, but especially at its upper, or proximal, end. This "upper end" or hend is transversely oblong, with a strongly marlied ridge or crest on its anterior, or ventral, surface. It articulates with the glenoid surface of the shoulder-girdle. An orifice, which admits * See below, p. 203.
air into the interior of the humerus, is situated on the hinder surface of its head; andeven in birds in which this bone is not pneumatic--as c.!\% the Ostrich and the Penguin-we find a deep depression in the place where this orifice in other birds is to be found. At the lower, or distal, end of the cylindrical part, or sheft, of the humerus are two prominent articular surfiaces, or condyles, with a median depression. In birds which do not fly -the Ostrich, and especially the Apteryx-it is greatly reduced

Fig. 155.

Bones of tile Rigit Wing of a Duck, seen from above.

1. Humerus. 2. Radius. 3. Ulna. 4 indieates all the bones of the manus.
2. Carpal ossicles-that opposite the end of the radius is the radiale, or scapho-lunar bone; that opposite the end of the ulna is the ulnare or cuneiform bone. 6. Pollex, consisting of two phalanges. $7 \& 8$ indicate the large bones of the hand, made up of 7, the metacarpal of the index digit, and S, the metacarpal of the third digit. 9. Basal phalanx of index digit. 10. Single phalanx of third digit.
in size and the characters above stated are very feebly marked. In the Penguin the humerus is in the form of a flattened plate, or lamina, of bone.

The radius and ulna are two elongated cylindrical bones placed side by side in the fore-arm. They meet together at either end, but diverge more or less from one another medianly. Each bone has an articular concarity or cup at its proximal end, into which one of the convex condyles of the humerus is received. The
ulna is placed on the external or posterior aspect of the forearm, and often shows tubercles which correspond with the points of attachment of the secondary "remiges." It is somewhat longer than the radius, and its proximal end hears posteriorly a more or less enlarged prominence termed the olectenon. The two bones articulate at their distal ends with that part of the skeletou of the pinion which corresponds with our wrist. In the J'enguin the bones of the fore-arm are considerably flattened.

The stecteton of the pinion consists of three parts:--(1) the part called "carpus," which corresponds with our wrist-bones; (丷) the part called "metacarpus," which corresponds with the bones in the middle, or fleshy, part of our hand; and (3) the "phalanges." or bones which correspond with those of our thumb and fingers.

The carphs in adult birds never consists of more than two hones, which are small, short, more or less rounded or polygonal ossicles. In the very young bird there may be one or two other small bones which with growth anchylose with the bones of the middle hand, i. e. with the " metacarpus." Of the two permanently distinct carpal bones one lies at the distal end of the radius, on which account it is often called the ractinle, while it is also named the scap,hotuncribone. The other carpal bone lies at the distal end of the ulna, and is called the ulnare or cumeitorm bone. The carpal bones answer to the bones of our wrist.

The metucarpus is composed, in adult birds, of a siuge bone of complex shape and mature. It bears a more or less rounded articular surface at its proximal end, which is somewhat expanded; for the greater part of its extent, however, it consists of a long, stout, cylindrical bone, generally separated by an interspace from a more slender and curved, similarly elongated, bony bar situated externally to the other. This slender external bar answers to that bone of the fleshy part of our hand-or "metacarpal" bone-which supports our middle finger. The stouter bar answers to that bone of the fleshy part of our hand which supports our fore finger or index digit, and it is therefore the "metacarpal of the index."

On the immer side of the base of this metacarpal is a small promiuence trmeated distally. This answers to the bone of the tleshy part of our hand which supports our thumb or pollex, and it is therefore the metacarpal of the pollex. In mo existing adult bird are the metacarpals separate.

Dinits an? Phulanges.- Except in one or two birds with defecLive wings, such as the Apteryx and Cassowary (which have each hut one digit in the hand), the pinion alwars includes some hones (${ }^{\text {mhellumps.s) belonging to the three digits which corre- }}$ spond with the three metacarpals already mentioned.

The pollex consists of two small phatanges which support tho "alula" *. The index is much larger than either of the other dimits, and also consists of two phalanges which are relatively large, and occasionally there is a third phalanx. The

$$
\text { Fig. } 150 \text { i. }
$$

Rigiit Hand of Ostricii.
c_{1}, Racliale, or raclial carpal ossicle; c_{2}, ulnare, or ulnar carpal ossicle ; d_{2}, pmomal phatams of the imex digit which has three phatanges ; d^{\prime}. phatamx of thiod dixit ; l, uhat ; $m_{\text {a }}$ and m_{s}, metacappals of secomed ame third digits anchylused tugether with that of the polles ; p', proximal phalaux of pollex ; r, ractius.
third digit consints of but a single phatanx, except in the Ostrich, where there may be a second phalanx, and a small cartilage representing such a part has heen found in a very yomg Duck. This third digit is applied to the outer t, or ulnar, side of the index digit.

It is the pollex or the index, or hoth (as in the Ostrich), which alone, in existing birds, ever hears a claw. As we have

[^27]alreadr pointed out *, claws do sometimes exist on the pinions of birds.

The articututions of the miny-lones are so arranged that the arm cannot he twisted as we twist our own arm in turning the palm of the hand upwards and downwards.

The elbow-joint, or that between the upper and lower arm, onls permits hinge-like movements in one plane, for folding and unfolding the wing, and the same is the case with that joint by which the skeleton of the pinion is joined with that of the lower arm. The individual digits being all bound together, anve the short pollex, in one common skin or integument have hardly any power of separate movement. The hinge-like movements of folding and unfolding are, howerer, extensive, the hand, or pimion, being capable of moring so as to be folded back close against the outer (ulnar) side of the fore-arm.

The pelvic limbte!tiolle, which is also called the petric arch, or sigeleton of the hips, contrasts strongly with the "thoracic limb-girdle " \dagger. In the first place it hardly ever, in Birds, merits the name of a "girdle," for, with the exception of the Ostrich and the Rhea, its sides do not unite rentrally, i.e. distally. The name has been hestowed on it becanse in other classes of animals-in almost all Mammals and Reptilesit does truly form a girdle. Moreover, the pelvic so-called "girdle" contrasts with the thoracic one becanse, instead of being firmly knit with the axial skeleton rentrally and sitting quite loose from it dorsally. it is firmly knit with the axial skeleton dorsally and is quite loose from it rentrally.

It agrees with the thoracic girdle, however, in that it consists of three parts or elements on either side and in that the proximal bony segment of the limb-the bone of the thigh-is articulated to these three elements at the point where they meet, and form a cup called the acetchulum or cotyloid convit!, into which the head of the thigh-bone fits. The three lateral elements of each lateral half of the pelvis anchylose together into a single bone, which in us is the hamelh-hone or os immminutum. In Birds the acetabulum does not form a complete bony cup, the bottom of it being composed of membrane only.

The three elements which thus make up each lateral half of the pelvis are termed respectively the ilium, the ischium, and the pubis.

The ilium may be considered as answering to the scapula of the thoracic girdle, in spite of the extreme difference of its shape from that of the blade-bone of the shoulder *. It is of enormons size compared to that of Mammals, being greatly extended both in front of and behiud the acetabulum. It is the bone which anchyloses on either side with the many vertebre which go to form the "sacrum" as already described \uparrow.

The ilimn of one side of the body may so anchylose with that of the other side and with the sacrum that the dorsal hinder part of the skeleton of a birds trimk presents an expanded bony shield like that presented by the sternum on the ventral anterior part of the trum skeleton. Moreover, the appearance

Fig. 157.

Pelvis of a Fowl (after Parker).
it, il, Ilium ; is, ischium; $p^{h \prime}$, puhes ; dl. dorso-lumbur rertebra : al, caulal vertebre, at the distal end of which is ($p y$) the pygostyle \ddagger; am, acetabulum.
of a median ridge is more or less produced by lateral depressions, thongh there is never anything really like the keel of the sternum, and for a very good reason, as we shall see when the muscular structure of a bird comes to be described.

The ilium forms the upper margin of the acetabalnm, and at the hinder part of that marein develops a strongly marked, somewhat flattened process bearing an articular surface. This is called the antitrocinanteric process.

* See ante, p. 189.
\dagger See ante, p. 173.
\ddagger See ante, p. 175 .
02

The ischium is the bone which forms the hinder margin of thes acetabulum, and is rery much smaller than the ilimm. It is generally in the slape of a thin elongated plate of bone more or le-s expanded dorso-ventrally towards the hinder emd, where it gemerally anchyloses with the distal portion of the postacetabular part of the ilim, thus anclosing a racant space between it and the ilimm-the ilio-ischentic fortemen. In some Birds-as the Ostrich, Cossowary, Tinamon. Apterex, and a few others- The ischium does not anchrlose distally with the ilium, so that there is a deep notch, instead of a foramen, hetween these boues, as is the case in ourselves.

In the Rhea alone the ischia anchylose together bemeath the caudal vertehree, forming an ischictic stmphtysis. The ischium develops from its inferior margin a small untrel purocess, which is situated a little hehind the acetabulum. This process may anchylose with the pubis.

The pultis is a long narrow lone which forms the anteroinferior part of the acetahblum, and thene runs hackwards near the inferion margin of the ischimm, which it may or mat not exceed in extent. The distal end may be more or liss expanded, but in the ()itricll alone does it unite with its fellow of the opposite side to form a pmbic s!mmplysis. It may anchyluse extensively with the ischium. or a long noteh-the obturntur motch-may be left between them. It may anchylose with the ischimm tonards the distal end onlr, so converting the motch into an obturator formmen; or it may anchyluse with the ischimm both fowards its distal end and also with the "rentral process" of the ischium, remaining elsewhere separate, and so forming 1wo nbturetor fordemint. Often a more or less marked proces projects forwards from the pubis from heneath the acetabulum. This is called sometimes the itio-puctinctal process, and somptimes the prepubis.

In a general way we may consider the ischium to repeat in the lower limb the coracoid of the thoracie girdle, and the pubis to represent the clavicle; but this parallelism is not exact.

The sterleton of the le!! consists of a single bone, called the "femur," in the thigh: of two hones named respectively the "tibia" and the "fibula" in the leg or "crus"; of one or two bones in that part called in Ornithology the "tarsus"; and of the bones of the foot. These latter answer to the bones of our
toes only ; those of the middle part of our fout answering to the greater part of the skeleton of the hird"s so-called "tarstis."

The femmi, or bone of the thigh, is more or less cylimitrical and expanded at eithere end. It is short and thick compared with the tibia. Its upper end, or hone, is rounded and is ohliguely directed inwards, its long axiv heines almost at right angles with that of the shatt. It hearw a deep pit into which a strong limament, the ligementern tores, is inserted and helps to bind it to

Fig. 158.

Leg-bones of the Diver (Colymbus).
f, Fenur ; t, hibia: P, enemial process (only found thus developed in the Diver and its allies) ; b, fibula.
the acetabulum. An upwardly projecting prominence from the summit of the shaft is called the trochenter, and it plays against the "antitrochanteric process" of the pelvis. On the back of the femur, below its middle, there may be (as sometimes in Swans and Ducks) a prominence into which the femoro-caudal muscle is inserted. This may be called the inferior trochuntor.

The distal end of the femur bears two prominences, or con-
dyles, side by side. On the outer side of the outer condyle is a depression into which fits the upper end of the "fibula."

The tiliou and fitula are two elongated bones extending downwards side by side, but of very unequal size.

The fibulu is a quite delicate needle-like bone which below is imperfect, pointed, and often anchylosed with the tibia, but

Fig. 159.

Rigit Foot of Emeu.
a, The proximal tarsal element, which is supposed to answer to that tarsal, or aukle, bone which is called "Astragalus" in man and beasts; $d_{2} \|_{1}$, second, third, and fourth digits; m, metatarsals anchylosed together into a tarso-metatarsal bone, except at their distal ends; t, tibia ; t_{2}, the distal tarsal element exceptionally distinct in this bird.
which somewhat expands and ends freely above, where it fits into the notch just mentioned as being situated on the outer side of the outer condyle of the femur. In some Penguins, however, and sometimes at least in Penction, the fibula is as long as the tibia.

The tibin is gencrally the longest bone of the leg, and is somewhat triangular in section at its upper part. At the anterior aspect of its upper end is an irregularly shaped prominence called the cneminl process. The lower, or distal, part of the tihia ends in two comlyles or antero-posteriorly directed prominences with a median depression forming a pulley-like articular surface or trochlet, which is directed somewhat forwards as well as downwards. On the front of the lowest part of the tibia, just above the condyles, is a deep depression over which a band of bone (a bony bridge) generally passes.

In trout of the junction of the tibia with the femur there is usually a small bone, the patellu, answering to our knee-pan. T'here may be two such bones, while sometimes there is $n 0$ patella at all.

The tibia answers to our shin-bone and more. It does so because the distal end of the bone, which is distinct in the young, answers to a portion of our ankle.

The main, often the only, element of the skeleton of the next segment of the lower limb is termed the turso-metutarsols. As already said *, it answers to the skeleton of the middle part of our foot which is called the "metatarsus." It consists of metatarsal bones more or less completely fused into one, and something more, since it also includes what answers to a portion of our ankle-bones. Now in human anatomy the skeleton of the whole of the ankle is called the "tarsus," and thus the skeleton of the "crus" of birds answers to our leg-bones together with the proximal part of our tarsus; while the skeleton of the so-called "tarsus" of birds answers to the distal part of our tarsus together with the bones of the middle part of our font. It is thus clear that the joint by which the so-called "tarsus" of birds articulates with their "crus" does not answer to our ankle-joint. It answers indeed to no conspicuously moveable joint which we possess. It answers to the interval between the proximal and the distal "parts of our ankle or tarsus. The joint between the "crus" and "tarsus" of birds is thus only cuncloyfous to our ankle-joint and is not homolorfous therewith, i. e. does not bear corresponding structural relations with surrounding parts.

The tarso-metutarsal bome is of complex nature over and above the fact that it contains elements of the ankle anchylosed with

* See ante, p. 197.
it. We saw * that the metacarpus of Birds answers to there of the hones of the therby part of our hand, each of which three bones is in us called a "metacarpal." In the same way the taiso-metatarsal bone of Birds answers to three (omly in the ().trich to mo mome than two) of the bones of the theshy pat of our foot, each of which three bone's is in us called a milumersel. Evidence of this complexity is afforded at the distal end of the bonet, which exhbits threc convex articular surfaces for artichlation with the bones of the second, third, and fourth toes (on digis.s) repectively. This essential complexity is chearly shown in the extremely short tarso-metatarsal bone of the Penguin, ly large apertures left between its middle and its immer and outer metatarsal elements. Similar hat much smaller apertures are to be detected in other hirds. The three metatarsals do not lie in the same plane, the median one inclining more backardly at its prosimal end, and more forwards at its distal termmation, than do the other two metatarsals.

It the upper end of the tarsu-metatarsal hone there is meme-
 which mas he marked by rertical grooves or perforated hy -mall canals \ddagger for tendons. It may be more or less cartilaginous or a separate ossicle.

When there is a hallux it is supported he a small separate metatarsal of its own, whech is applied to the bate of the lowere part of the much longer tinso-metatareal bone. 'This metatarsal. which answers to that of our great toe, cmels frety above in a styliform proces. Below it develops an articular surface for the proximal bone of the first digit of the foot-the hallux.

Very rarely the first metatarsal is long, and still more rarely it anchyloses with the tarso-metatarsal bone.

The bones of the toes, or diyits of the foot, are--like those of the digits of the pinions--called phenteryes. Their number has been alreadr indicated!? when we pointed out the nomber of joints in the ques, with which mumber that of the phalanges corresponds.

We hate already noted ब the occasional existence of "spurs."

[^28]Bone supports for them may exist anclyylused to the immer side of the tarso-metatarsal bone.

The articulutions of the ley-bones are so formed that they mamly move with a hinge-like joint one on the other. This is e-perecialls the case with the joint hetweren the tibia and the tar-umetatarsal bone. The articulation of the femar with the pelais is more free, though not so free as that of the humerus with the
 cially in aquatic hirds, and in them again we find such a diapusition of the joints betweren the metatarsal condyle and the proximal phalanges as determines the spreading out or approximation of the fingers ly their mere flexion and extension. Many hirds, ex pectally the long-lenged waders, can shep securely on one legowing to an arrangement of the bones which does not allow them to be flexed without an eftort. A rounded prominemes on the firont of the proximal part of the tarso-metataral home passes up, and locksinte a depression on the front of the distal end of the tibia when the leg is straightemed, and firmly maintains the lers in this position. A slight voluntary effort, bowever, serves to mond this junction, and allows the prominemen to pass into the fossa between the condylus when the leng is hent, which forms a sort of socket for it, though a sharp prominence at the lower cond of that "socket" prevents the prosess passing into it without surd eflort. This is well seen in the Stork. The commection of the head of the fibula with the side of the outer condyle of the femmer aloo serves to mantan the limb in firmess and stability ; although the knee-joint is almost constantly more on lese dexed during sleep, the weizht of the body keeping it so.

CHAPTER IV.

The other Systems of Organs, and the Development and Migration of Birds.

Tife Muscular Ststem.

TIIE flesh which invests the skeleton consists of a multitude of most delicate threads called " muscular fibres," which are variously aggregated in masses to form "muscles." These are the organs of movement. They are generally attached at one or both ends to different bones, sometimes by the muscular fibres themselves, often by the intervention of a very strong and dense band of tibrous membrane called a tendon- the muscular fibres being implanted into the tendon, and the tendon into the hone the muscle acts on. Muscles act by contracting ; that is, the fibres which compose it-and therefore the whole muscle they compose-tempotarily change their shape, becoming shorter. and stonter, and so causing those hones to approximate, to which the ends of the musele are directly or indirectly attached. They act on the bones by making use of the latter as levers or fulcro.

The muscles of birds are very compact and red, especially those which are the most exercised. They are packed where they can best be carried with respect to the ceutre of gravity. They are thus very voluminons on the breast, while many muscles have very long tendons, so that they can act on parts remote from the centre of gravity, while their heavy fleshy substance is placed in proximity to it. This is especially the case with the muscles of the limbs.

Muscles are called flesors or extensors or rotators or tensors or eferator's or depressors or abductors or alductors, according to the sort of motion their contraction results in.

Only those muscles will be here noted a knowledge of which may be useful to the ()rnithologist for purposes of classification. As flight is the most essential and important action for a Bird,
so the muscles of flight are the most voluminous-those muscles, that is, which raise and depress the wing.

In ourselves the muscles which draw back and raise the arm are situated on the dorsal surface, while those which more it forwards are on the breast. In Birds, however, as almost everyone must have noticed, there is very little flesh on the back, and, indeed, both these sets of minsles are on the breast, which is the most convenient arrangement with respect to the centre of gravity, though it necessitates a very special moditication. They are called pectoral mu-cles. It is said that these muscles in the swift weigh more than all the other muscles of its body taken together.

The largest muscle of a Bird is that on the surface of the breast, which is called the great pectoral. It takes origin from the sides of the keed and some other parts of the sternum, and is iuserted into the imner side of the crest* on the anterior surface of the head of the humerus, and by its action depresses the wing.

Beneath this great muscle there is another, called the socond pectoral-or supracoracoiders-which has an extensive oriwin from the sternum, and is a powerful muscle devoted to antagonizing the action of the great pectoral-that is, it raises the wing. For this purpose there is the special modification (to which we before referred) to compensate for the rentral situation of the muscle itself. The fibres of the second pectoral are inserted into a tendon which passes through the interspace left at the junction of the coracoid, scapula, and clavicle t, the bony margin of which serves it as a pulley. Passing round the coracoid it is inserted into the upper end of the crest of the humerus, and is thus enabled to act as anclerator of it and therefore of the whole wing. This muscle is particularly strong in the Penguin and other diving birds.

There is a third pectoral, a small muscle, which arises from the sternum and often from the coracoid, and thence passes directly to the humerus, which it depresses. There is sometimes also a fourth pectoral, which is similar to the third one.

The skin of birds contains many very small muscles which act upon the individual feathers. Most important are those which act on the remiges of the wing, and by rotating them allow the air to pass between them each time the wing is elevated in flight.

* See ante, p. $190 . \quad \dagger$ See ante, p. 190.

The other muscles of the wing correspond in a more or less general way with the muscles of our own arm reduced; hut their tendons are long and semder, and the arrangement of the *keleton, as already stated *, are such that, thongh there are muscles answering to thowe which rotate the hand in us, in Birds they cannot rotate it. They can do nothing but open and shut the wing. There is, however, a muscle called the tensor putenii which has an elantie tendun, and acts on the fold of skin on the front of the wing between the shonlder and the wrist t. It takes origin by muscle from the former, while its tendon is inserted into the latter. It may be distinguished, as the
 in common with the former but is inserted into membrane within the bend of the ellow. The arrangement, however, of these tensor muscles-which sometimes receive the common name of propettengetis-differs in various ways in various hirds. There is also ancther tensor--ometimes called metrputuryintiswhich acts on the fold of skin between the trunk and the inner surface of the upuer arm, and there is sometimes also a muscle, called dermo-tensor putcuit, which arises from the inside of the shin of the front of the neck, and passing thence over the shomlder is inserted, by a delicate tendon, in common with that of the tensor patagii Tongus.

Amongst the muscles of the leg available for classification must he mentioned one called the cumbiens, which exists in some hirds and not in others. When fully developed it arises from the pelvis in the vicinity of the acritabulum, and ends in a tendon which passes user the outer side of the linee and ends he joining one of the flexor museles which bend and contract the tors. When a lind is at roost and the knee lent hy the weight of the hody, stach bending of the linee stretches the long tendon, and this (by the comection of the tendon with the flexor muscles) ipso ficto causes the toes to contract, and so, without any effort, a firm grasp is mantained. Birds with an ambiens are termed homolomonatons, those without it, cnometo!/onutons. A muscle called the biceps cruris varies as to the conditions it presents. Ordinarily it arises from the greater part of the dorsal margin of the post-acetabular part of the ilium. Its fibres end in a round tendon, which is iuserted into about the middle of the fibula.

The simitemtinosus is a flat ribbon-like muscle which arises from the transerse processes of the anterior candal reptemad, and is inserted by a flat tendon into the inner side of the upp m part of the tilna. An acerssor! muscle may join it, aftur ari-ing from the femur, to end upon the surface of the back of the crus.

The semimembranosus is another ribbon-like muscle which runs parallel to but beneath the semitendinosus. It arise from the oater side of the ischium and is iuserted. with the tendon of the semitendinosus, into the inner side of the head of the tibia by a flat tendon.

Flexor Tendons of a Passerine Bird.
The tendon of the flexor longus hallucis crosses superticially to that of the flexor profundus digitorum, and then goes to the hallux. The lastnamed muscle exclusively supplies the other three digits.

The fimoro-camdal is a long muscle which springs from the transerse processes of the hinder caudal vertebre and is inserted onto the posterior surface of the femur-into its inferior trochanter when there is such a process.

A muscle actrssor!y to this may arise from behind the acetabulum to join in part the tendon of the femoro-candal and in part to be itself inserted into the femur.

The muscles which go to the toes become tendinous when they pass down beside the tarso-metatarsal bone, and some of their tendons may pass throngh small bony canals before mentioned * as existing in the calcameal process. There are two spectial muscles which arise from the hinder surface of the tibia and fibula and serve to bend the toes; each muscle ending in one or more tendons, which are implanted one into each digit. One of these muscles is the fleeor profunctus dightortm, which grenerally sends its tendons to the three front toes. The other muscle is the flexor longus hallucis. It usually ends by sending a single tendon to the hallux. The tendons of these muscles, as they are sitnated on the under, or plantar, surface of the foot, are spoken of as the plantar tendons (fig. 160).

The diuphrofgm is a sheet of membrane and muscle which covers the ventral surface of the lungs, and is most complete in the ()strich and Apteryx. Even in those birds, however, it is not continuous, and the apex of the heart passes backwards through it.

The Aufmentary Sistem.

Birds eat more, in comparison with their bulk, than do amimals of any other class of rertebrates. They feed on animal substances in the majority of species, and most of all on insects. The system of organs devoted to this function is the alimentary canal, with the rarious parts ammexd to it. The alimentary ccurnl it self consists of the mouth, gullet, crop, stomach, gizzard, intestine, cloaca, and rent. The parts annexed to it, and which assist it in performing its great function of digestion, are the salivary glands, the pancreas, and the liver. Other parts forming no part of the alimentary system may nevertheless communicate with the cavity of the alimentary canal. Such are: the nontrils, the ears, the lungs, the kidneys, and the generative glands.

The month is bounded and enclosed by the bill, which we have alveady described, and with the shape of which it corresponds. Into the roof of the mouth the nostrils open by a slit which is generally single, and the ears open into it more posteriorly, the usually single opening being that common to the two eustachian tubes \uparrow. At the lower part of the mouth is

[^29]the tongue, supported by its "os hroides" *, and hehind the tongue is an opening, called the glottis, which leads into the windpipe and so into the lungs.

Into the hase and sides of the month open the spittle-grands or salicary! stanels, which are usmally small and simple, but may, as in the Woodpecker, be considerably developed.

Fig. 161.

Viscera of tief Fowl.
 bladder ; p, pancreas; d, loop of the duodenal part of the intestine enclosing the pancreas ; si, small intestine; li, large intestine; \because. cieca; ", oviduct ; u, ureter. - The cloacia is cut open, and some feathers are represented as attached to its margin.

The confue may be of large siza, and soft as in the Parrot; it may be a horny spine, as in the Woodpecker. It may form two delicate tubes, side by side, as in the Humming-bird; it

[^30]may be feathery, as in the Toucans and Joner-caters; or it may he a mere rudiment at the hottom of the month, as in the Kingfisher and Pelican. Very mely, as in the Bustard, a large ponch may open beneath the front of the tongue and be capable of much distension with air.

The sullit, or cosopherfus, is sometimes very capacious. It may also have a special dilatation in front, called a crop or inghacis, wherein food can he temporarily retained, and sometimes marerated, before reaching the stomach. Sometimes, as in the Pigene, there may be a double crop, and it may furnish a milky secretion at the breeding-season. Birds of prey throw up the indigestible parts of their food as "castings." Other birds throw up part of their food to feed their young. The Hornbill will throw up the lining of its stomach.

At the lower end of the gullet is the digestive stomath or promentriculus, which answers to that part of our own stomach which is called the "cardia." It is richly supplied with glamel-

The next segment of the alimentary canal is the mizanne, which answers to that part of our stomach which is called the
 a mall internal cavity provided with a homy lining. It is into this cas ity that lirds swallow down stones, which when brought to bear on food by contractions of the gizard's rery muscular walls, act as teeth and grind the grains or other hard substances fed upon. In hirds that feed on food which needs no grinding, the gizzard's walls are much thimer.

The intustime is much shorter relatively than in us. In the Toncan it is hardly twice as long as the hirds body and hiill. It sumerally consists, as in ourselves, of two parts : an anterior sumell intestine, which is continued into a shorter part called the lurye intestine. The foldings of the intestine vary in arrangement, esperially those of the small intestiue, and these arrangemonts distinguish certain groups of birds. There is but little difference of capacity between the ro-called "small" and " large" intestine. The anterior part of the small intestive is called the duodemm, and this part is disposed in a pretty coustant fold called the "duodenal fold." The hinder part of the large intestine is called the rectum. The transition between the small and the large intestine is usually marked by a pair of hollow oftshoots or diverticula, called the cuctr. These may li. rery small or very large or of moderate size. Instead of a
pair of crea there may be a single crecum or there may be nothing of the kind whatever.

The rectum opens posteriorly into the terminal chamber of the alimentary canal, which is called the clocco. The latter is a capacious rounded space, into which the urinary and generative ducts also open, the whole commmicating with the exterior by a single aperture, the vent.

A glaudular structure, called the bursu Furnicio, also opens upon the wall of the cloaca into its cavity.

A gland, called the pancreas, which supplements by its secretion the action of the saliva, lies embraced by the duodenal fold of the intestine. Two or three ducts from it enter the intestine near its commencement. A little further down, the ducts of the liver convey its secretion, the bile, into the intestine. It is divided into two main lobes, and may or may not be provided with a gall-bladder.

A small round or oval body, called the spleen, lies not far from the stomach.

Tue Urinary and Generatite Sistems.

The urinary system consists of two livlneys, the ducts of which-the ureters-pass backwards and open into the cloaca, behind where the alimentary canal opens into it. The kidneys are soft in texture, and sometimes-as in the Crebe and Cootare more or less blended together at their binder ends. They are dark-coloured and firmly fixed upon the rentral surface of the clorsum of the trunk, especially within those cavities of the sacrum before described \%. At the anterior end of either kidney is a small yellowish body named the suprarenal capsule.

The testes, or essential male organs, are a pair of oblong or more elongated bodies placed on the ventral side of the anterior part of the kidneys. Each consists of a mass of most minute and highly convoluted tuhes. The testes vary much in size according to the season of the year, enlarging greatly at the breeding-season. Their secretion is convejed outwards by two long, more or less convoluted tubes-the vasa diferentia -which pass back beside the ureters and open, each ou a papilla, in the cloaca, one on each side of the openings of

[^31]the ureters. In Water Birds, such as the Drake, there is a special intromittent organ, spirally arranged, which can be protruded from the cloaca or retracted within it, as the finger of a glove may be everted and the reverse.

In a few Birds, such as the Ostrich, a more solid organ of the kind, grooved beneath, is attached to the front wall of the cloaca.

The ovar\%, or essential female organ, is generally single; its companion aborting. It is usually the right ovary which atrophies. This female organ has somewhat the appearance of a small bunch of grapes, the grape-like structures being the more or less developed eggs. The duct-oviduct-which conveys the eags outwards is widely open at its upper or anterior end. The more posterior part of its interior is lined with long delicate processes, or close-set villi, which secrete the material of the egg-shell. Posteriorly the oviduct opens into the cloaca.

The eggs or ova will be further noticed when we come to speak of the development of Birds.

The Respiratory System.

This system is wonderfully developed in Birds which, as they are specially modified to move in the air external to them, are also specially modified to receive air exteusively within them, as has been already stated *.

Birds breathe by the alternate approximation and separation of the stemum and the hack. Their separation tends to produce a racumm, and causes air to rush into the body, while their approximation expels it by contracting the space into which it has been received. This movement is greatly facilitated by the joints which exist at the junction of the vertebral and sterual ribs \uparrow.

Although this action is called "breathing," respiration or breathing really consists in the purification of the blood by the elimination of carbonic-acid gas and the absorption of oxygen.

Air is introduced into the body through the "glottis," which is the external aperture of the mind pipe or trachuct. The uppermost part of the trachea is slightly dilated, and contains parts which correspond with those which exist in a dilatation

[^32]of the uppermost part of our own trachea, which is called the laryme. In us this is the organ of voice, but it is not so in Birds.

The windpipe of Birds is liept in the form of an open tube by a numerous series of generally complete bony rings in its substance. It is rery long and often convoluted, sometimes making a coil within the sternum, and sometimes possessing subcutaneous dilatations, as in the Emeu, where some of the

Fig. 16 .

Syrinx of Riven.
Lowest part of trachea and roots of the two bronchi.
a, Front half-ring of bronches: b, second (more moreable than the first) ; c, third half-ring-connected with the second by ligament and membrane.
rings are incomplete in front. In the Penguin the trachea has a longitudinal septum. At its lower end the trachea bifurcates and its two branches, which lead into the lungs, are called bronchi.

The organ of roice in Birds is called the syminx or lower laryme, because it is placed much lower down than our own organ of roice. Iudeed, such a structure as the" syrinx" is absolutely peculiar to the Class of Birds. Its qenema condition is as follows. It is formed by the coalescence and moditication in shape of the lower rings of the trachea and the upper rings of the bronchi, the latter being incomplete internally, so that the sides
of the hronchi which look towards each other are at their upper part merely membranous, forming what is called the membirtua t!mpunformis (figs. 16i: \& 164,4). The coalesced rings of the lower part of the trachea form a chamber called the tympotmm of the trachoch. Internally, the syrinx is generally divided hy a bar of hone, the os trunsurisule or pessutus, from the upper margin of which a delicate membrane ascends into the cavity of the tympanum of the trachea, ending in a free concave margin, whence

Side Tiew of Cayity of Larynx of Rayen.
The onter part of the lower end of the trachea and of the bronchus next the spectator being cut away to show the interior.
i, Ostransrersale, pessulus, or bony bar traversing the lower end of the trachea from before backwards, and having an opening into one of the bronchi on either side of it ; h, membrana semilunaris ascending from the os transversale, and terminating within the trachea by a free concave margin: ! , membranous inner wall of the bronchus or membrana trmpaniformis connecting the inner extremities of the bronchial halfrings.
it is termed the membirana semiluncris. This highly elastic membrane, together with two other elastic folds of membrane, which project inwards from the outer side of the commencement of
each bronchus, are the special agents of song. They sound as does an oboe or any other reed instrument. Their action is modified by special muscles which act on adjacent parts. These are called ectrinsie muscles if they pass between the respiratory tube and parts external to it. They are called intrinsic muscles if they only pass from one part of the respiratory tube (trachea and bronchi) to another. (ienerally there are two pairs of "extrinsic " muscles, passiug from the clavieles, or the sternum,

Fig. 164.

A. Front view of syrinx.
B. Side view.
($\& f$, Inferior bifurcations of the lateral tracheal musele (fracheo-lateratis) going to the third bronchial half-ring; l, shorter musele (bromehotrenfectis hire eis) inserted into pusterion end of second brouchial halfring: $e_{\text {: posterior common laryngeal muscle-hronchintis pmaticus, going }}$ from last tracheal ring to hinder end of second bronchial half-ring; e, anterior ditto-bronchialis anticus, from last tracheal ring to fore ends of first and second bronchial half-rings ; d, relaxor of tympaniform membrane (stomo-tra-hechlis) going from the side of the trachea to the sternum ; g, membranous inner walls of the bronchi.
to the trachea. In addition to these there is commonly one pair or there may be five or six pairs of "intriusic" muscles, passing down from the trachea to the bronchial rings. These
additional muscles are present in Singing-hirds: but also in many Birds which do not sing, as, e. !/, the Crow and Raven.

There may be no "membrana semilunaris," and only three pairs of additional muscles, in birds highly gifted as to their power of emitting special somuds. A syrinx may be formed by the trachea only (without the intervention of the bronchi), as in Thummophilus, where the lower part of the trachea has delicate walls, and is flattened dorso-ventrally into six or seven delicate segments of rings, the rings being interrupted laterally.

A syrinx may be formed in each bronchus (without the interrention of the trachea), as in Stentornis, where more than ten rings in each bronchus may be counted before reaching the syrinx, and where a pair of muscles pass from each brouchus to the trachea.

$$
\text { Fig. } 165 .
$$

Rigit Lung of a Goose (after Owen).
a, Bronchus ; b, b, openings into air-sacs. (In the two bronchi which are cut open are seen the apertures of their primary branches.)

The intrinsic muscles of the voice-organ may be inserted into the ends of the bronchial semi-rings, or in what is called an Acromyoidel mamer, or into their middle parts, a mode which is distinguished as Mesomyoital. A condition in which the trashea alone forms the rocal organ is spoken of as "Trachenphomal." An arrangement in which the lower end of the trachea is not modified to form a vocal organ is called Oligomyoidut.

Parrots have no os transversale or septum dividing the lower end of the trachea, and they have only threo pairs of intrinsic
muscles. They speak with the aid of their tongue and beak alone. The syrinx may be altogether absent, as in the American Vultures and in the Ostrich and its allies.

The lumys are two oval flattened organs fixed in and imhedded between the ribs from the second dorsal vertebra to the kidners. Their texture is loose and spongy. The two bronchi penetrate their anterior surface, and divide into four or six branches terminating by side openings on the surface, which openings commumicate with air-sacs, which are usually nine in number.

$$
\text { Fig. } 166 .
$$

Diagram of a Lobule of tife Lung of a Bird: greatly magnified (after Thomas Williams).

Normally one of these is situated between the clavicles, and gives out a process on either side which, passing into the axilla or "arm-pit," enters the humerus*. 'Two others penetrate the abdomen, and often enter the sacral vertebre and each femur; four permeat the more anterior region of the trunk, and two go to the neck. The latter often send branches into the bodies of the cervical vertebre. These air-sacs do not supply air to the cranial bones. These are supplied from the nose and the cavity of the outer part of the ear.

[^33]The bronchi lose their rings after entering the lungs, and give off secondary branches at right angles (fig. 166), and these again tertiary ones in a similar way, ultimately ending, in the lobules of the lungs, in very minute air-sacs, which wake up the bulk of the substance of these organs.

The Circulatory System.

The hectrt of a Bird consists, like our own, of four caritiestwo curictes and two rentricles. The blood is collected from all parts of the hody by the reins, which gradually unite torether and end in three large vessels-two called the superior vone ctew and the other the inferior venct ctert - which pour the renous blood they contain into the right auricle, whence it passes into the right ventricle, a valvular flap formed of muscle--the right auriculo-ventricular valve-preventing its regurgitation. From the right rentricle a ressel goes forth called the pmlmomar!y arter!!. which bifurcates and then subdivides in either lung, convering the blood into it. Thence it is collected and brought back, by converging ressels called the pmomontry rins, to the left auricle, whence it passes into the left rentricle, another valvular structure-the left aurionto-ventricutar valve- preventing its regurgitation. From the left rentricle it is sent forth by a single great artery called the aorta, which ramifies, seuding blood all over the body, its branches ultimately ending in most minute ressels called capillaries, which lead to the commencement of the reins of the body. Thus all the ressels proceeding from the heart are called "arteries," whilst those adrancing towards it are termed "reins," and a complete circulation goes on as above indicated. There is, however, another subordinate circulation which takes place in what is called the portal system, or system of ressels ramifying in the substance of the liver. The vessels which thus conver blood to the liver and therein ramify are called portul reins, while those which collect the blood from the liver and carry it on towards the heart and into the inferior vena cava are termed heputic veins. The blood collected by the portal reins comes from the stomach. intestines, and also from a caudal vein. The heart of a bird is more pointed than that of Mammals, and its apex lies between the lobes of the liver.

The cortu as it proceeds from the heart arches over the right
bronchus, but before doing so gives off two large arteries, each of which is called an innominute artory. Each of these gives off an artery named the subclanicun (for the wing), and then ascends a short way and divides into the carotid and rertebral arteries. The vertebral arteries traverse more or less of the canal formed by the tramserse processes and pleurapophrses of the cervical rertebre *. The carotids may ascend side by side to the base of the skull or may meet and hend into a single trunk which bifurcates again before entering the cranium. Yery often, however, there is but a left carotid, which bifurcates at its summit. These varions conditions characterize different groups of birds. The aorta then passes backwards beneath the spine, and supplies all parts of the body, seuding two large arteries to each of the pelvic limbs.

On reaching the base of the skull the carotids enter it, passing above the basi-temporals and through the sphenoid into the cranial cavity.

The blood of Birds is hotter than that of any other animals, and is of a deep red colour. It is also more richly supplied than is that of llammals with those minute bodies called reel corpuscles, which it always contains. They are elliptical, flattemed, and nucleated, and average इ1tu of an inch in long diameter.

The Nertous Ststem and Organs of Sense.

As the internal skeleton is divisible into an axial and an appendicular portion, so the nervous system is divisible into a central and a peripheral division.

The central part of the nerrous system is made up of the brain and spinal cord, while all the nerves which thence proceed constitute its peripheral portion.

Very little need be here said about either, as such structures have been hitherto but little used in the definition and classification of Birds.

Their brain affords a good example of the law that this organ requires to be of a certain absolute size independently of that of the whole body ; for the brain of extremely small Birds is relatively very large.

[^34]This organ consists of a main part called the cerehrum, formed of two lateral rounded masses placed side by side called the cerebral hemispheres, and which are medianly united to a certain extent. Immediately behind them is a single, trausversely marked body

Fig. 16.

Dorsal Aspect of Brain of a Prgeon.
2, One of the cercbral hemispheres: 3, pineal gland ; 4, one of the optic lobes; 5, cerebellum.
called the cerchellum, which if cut through shows a peculiarly ramified disposition of a darker and a lighter substance, termed the arbor viter. On each side of the hinder part of the cerebrum is a rounded body, and these two are called the optic

Fig. 168.

Left-side vien of Brain of Pigeon.
I, Olfactors lobe ; 2 , left cerebral hemisyhere; 3, pineal gland; 4, one of the optic lobes; 5 , cerebellum ; 6, pituitary body ; 8, optic nerve.

Inlies, which lie rather beneath the front part of the cerebellum. The common base of the brain continues backwards in the median line, and is called the modulla ohlonyuta, which is directly continuous with the spinal cord. From the frout end of each
cerebral hemisphere a process proceeds forwards. These are the olfactory loles. Between the cerebral hemispheres and the cerebellum, on the dorsal aspect of the brain, is a small process called the pincal !fland. A median inferior prominence is called the pitnitar! boct!. Within, the brain is hollow, but the hollow space is variously disposed in different regions, and its walls are of very different thicknesses in different parts. Those parts of the cavity which extend into the hemispheres are called the Tateral rentricles, and they open posteriorly by an aperture termed the foromen of Munro into a median cavity called the third ventricle. This is continued backwards into auother beneath the cerebellum, which is the fourth ventricle.

The spinal cord shows two enlargements where it gives off nerves for the wings and legs respectively. The posterior of these enlargements also contains a carity or ventricle termed the sinus thomboidalis.

Some of the nerves given off from the brain go to the organs of sense, while others go to muscles and viscera. The points of exit from the skull of some of the nerres have been already indicated *.

The Nose.-This consists of two nostrils, which open externally in the way before described \dagger and which pass back to open internally on the roof of the mouth, generally by a single aperture there. The olfactory lobe (often called olfactory nerve) above mentioned supplies the nerves which give the power of smell, and they ramify on the membrane which lines the nasal cavities.

The Organ of Taste.-The tongue, which has been already described \ddagger, is a part which in other animals serves for gustation, but probably has little or no power of taste in very many Birds. That sense is probably ministered to by the lining of the beak, which is doubtless also a most important instrument for ministering to the sense of touch.

The Ear.-There is hardly any external ear, save sometimes a circle of feathers-as in the Bustard, Ostrich, and Owl. In the last-named bird the external oprening is wide, and is protected by a tlap of skin with a few folds, thus distantly resembling the human ear. The external opening leads into a very shallow cavity bounded by the quadrate, squamosal, and exoccipital bones.

[^35]\ddagger See ante, p. 207.

It is closed by the dram of the cotr, tympamem, or tympunic membrene, which is invested by the general skin, and is therefore not itself to be seen. Within this membrane is a bony chamber named the tympanic crevity. In some Birds a bony tube, called the siphomizm, passes from the tympanic cavity to the lower jaw, and conveys air to the articular bone.

In the front part of the tympanic cavity is an opening which is the hinder orifice of the enstachian tube, while in the imner wall of the tympanic cavity are two ajertures close together. The upper and anterior of these is called the fenestrot oeralis, while the other is the fenestion rotundu. I delicate little bone shaped like a doctor"s stethoscope traverses the tympanic carity. Its expanded end is applied to the fenestra ovalis, while its opposite extremity, from which various delicate processes may direrge, is attached to the tympanic membrane. It is called the columella.

The two fenestra open into another still more internal cavity, within which is the true ear or aryan of herein!. This most internal cavity lies within the substance of the periotic bones of the side-wall of the skull *, and is the "internal ear"the trmpanic cavity being the "middle ear," and the parts external to the trmpanic membrane the "external ear." This imnermost cavity has a very complex shape and is therefore called a bomy lubyrinth. Its form is determined be the membranous parts it encloses, which constitute the membranous Zabyrinth.

The membranous labyrinth consists of three semicircular canals (anterior, posterior, and external) which open into a common central cavity or vestibulc, from which an elongated membranous hag, the cochlen, proceeds in the opposite direction. This membramous labyrinth is filled with a Hluid called the embol!mph, and floats in another Hluid, filling the bouy labyrinth containing it, called the perilympilh. The fenestra ovalis is set in the wall of the bony casity containing the vestibule. The fenestra ovalis is set in that which encloses the cochlea.

The nerve of hearing penetrates the periotic capsule aud supplies the walls of the cochlea and semicircular canals.

The Eye--This organ in Birds is formed in essentally the same way as our own. It consists of an ereball enclosed by a strung sclecotic membicune, which is transparent in front, forming

[^36]the comen. Within this are two mequally-sized chambers separated by a vertical curtain, the i is, with a central aperture, aud by a dense transparent body euclosed in a very delicate membrane or copsule. This dense, transparent hody is the crystalline lens, which fills the aperture--the pupil-left in the middle of the iris. Around the lens are small processes termed cilict?! process.s. Round the iris is a fibrous band called the ciliary Tiyament, while

Fig. 169.

Side Tief on Membrinocs Lapyrintia or Pigidon: greatly enlarged.
$c a, c p$, and $c e$, anterior, posterior, and external semicircular canals; co, cochlea.
on the outer surface of the choroid is a similar band of contractile fibres-the ciliur! muscle. The chamber in front of the lens is filled with the aquens: lumour, while the vitreous humour fills that behind it. Lining this posterior chamber is the essential organ of sight, the expanded optic nerve or retina. External to this is a dark, highly vascular membrane termed the choroid.

Directly enclosing the vitreous humour is the hyatoint memthene, which splits around the copsele enclosing the lens, leaving a space termed the chnal of Petit. The optic nerve passes from the brain to the ereball throurh the optic foramen, as already* mentioned. This eveball is moved in its somet by straight and oblique muscles implanted into the outer surface of the

Fig. 170.

> Diagrai of a Vertical Antero-posterior Section of the Eye of a Bird (enlarged).

1. Optic nerve. 2. Sclerotic. 3. Choroid. 4. Retina. 5. Marsupium. 6. Cornea. 7, 7. Bony plates enclosed in sclerotic. 8. Corrugations of choroid forming the ciliary processes. 9. Canal of Petit-formed by a bifurcation of a most delicate membrane, the hyaloid membrane, Which immedintely surromels the vitrenne humsur, and which bifureates anteriorly and goes to the capsule of the lens. 10. Iris. 11. Anterior chamber of the eye containing the aqueous humour. 12. Capsule of the lens. 13. Lens. 14. P'osterior chamber of the eye containing the ritreous humour. 15. Ciliary muscle.
sclerotice, and it is proteced in front by an upper and lower eyelid and atso by at third evelid or metterting membrane t.

Both Mammals and Reptiles nmmber amongst the species which compose thair clan-, forms which are naturally blind, but

[^37]all Birds are provided with latere and efficient eyes. Theire eveballs are generally longer from within outwards than thone of other vertebrate animals, and their crystalline lens is hut little convex. The whole eye is shortest and the lens least flat in aquatic Birds and longest in the Owls .

The sclerotic of birds is not only dense but contains bony plates which orerlap each other and by their contraction protrude the aqueous humour-which is very abundant-and so render the cornea more convex. An organ called the marsupium or puction is a vascular membrane which projects into the vitreous humour along a line extending from near the entrance of the optic nerve to the lens. It seems that this organ can be distended and then must help to push the lens forwards. These various teleseopic arrangements facilitate rapid changes from very long to very short sight. They are most nowdful for such active creatures as Birds. A Hawk will suddenly dencend a quarter of a mile and probably can kerp a creature it intends to prey on in focus all the time of its descent. The Bird's eve is indeed the most perfect of all.

The nictitating membrane is drawn out over the ere by a muscle which arises from the lower part of the inmer side of the sclerotic, and thence its tendon winds round the optic nowe and passes over the eychall to bu- inserted into the thind eyedid. By its contraction it would compress the optic nerve and so impair sight, but that it passe's through a tendinous sheath of a rumelrate mesele which comes from the back of the sclerotio. II hem, then, the winding musele acts, the quadrate misele ald- at the same time, and draws the tendon away from the optic nere.

The lower egelid is more moreable than in Man and Manmals, having its own depresson muscle, and contains a small cartilage.

Tiwo glands secrete fluid to lubricate the erobatl. One of three, the Ilrowtrion !flent, lies at the immer anirgle of the eve. The other, the lachrymal efland, lies, as with us, at its outer angle.

The Development of Birds.

It would lee quite beside the purpose of this work to describes in detail the wery complicated process by which the erarm of a Bird transforms itself gradually into the structure of the adult. Our object, we beliere, will be completely attaned by a brief
statement of a few fundamental facts and a short account of certain structures the temporary distinetness of which enables us to understand the nature of parts which ultimately show no trace of their earlier divided condition.

The orary has been compared to a small bunch of grapes, but these grapes rary greatly as to size. They are, of course, the immature eggs or ora. The smallest consist of but a microscopic spheroid of the substance called protophasm * enclosed in a delicate membrane, the ano pellucitce, and containing within its suhstance a denser particle called the mucleus or germinal vesicle, within which again is a miuute distinguishable particle, the nucleolus or germinal spot.

Gradually one orum after another increases till its protoplasm, the yell;, becomes of large size. It is enclosed within a membranous envelope, the orisac, which ruptures and allows the orum, when ripe, to escape into the upper, open end of the oviduct. As it descends this tube it becomes coated with an albuminous secretion, the rehite, and further down that tube it receives its calcareons investment, or shent, and very often layers of pigment according to the colours which may characterize the eggs of this or that kind of bird.

But a very small portion of the yelk is actually transformed directly into the developing embryo--namelv, a small patch on the surface familiarly known as the tread. The rest of the relk serves but to nourish the embryo.

From this small superficial patch of protoplasm all the raried tissues and all the complex parts which constitute the adult Bird are, by degrees, derived. The primitive cell of which the embryo, at the very first, consists, divides and subdivides itself again and again till three layers of cells are gradually but rapidly formed. The most superficial of these is called the epiblust, the deepest the hypmblast, while between them is the mesoblast.

Soon a slight longitudinal furrow is formed, called the primitien streck: but much more important is another longitudinal groove (more anteriorly situated with respect to the embryo, as subsequent development shows), the merhullar?! !roove, wherein is laid the foundation of the brain and spinal cord; while beneath

[^38]the latter the first rudiment of the back-hone is formed. Then, after certain other elevations and depressions and various foldings, blood is formed, vessels arise, a heart shows itself and beats, and a primitive circulation is established. Limbs also crow forth, and jaws, and sense-organs form themselves, and so, little by little, what was at first a miuute spheroidal particle of protoplasm, more and more approximates to the form of a Bird.

But the body is only built upin a very roundab sut way. Its earlier structural arrangements are very different from those of adult life. The brain is at first more like that of a fish than of a Bird. The heart begins as a simple tube, which subsequently becomes bent on itself and subdivided into chambers. The blood-ressels which go to and from it are at first vers dilferent from what they ultimately become.

The arteries which proceed from it form at first a series of arches passing up on either side of the neck to unite dorsally and there give rise to the commencem of the aorta.

Certain clefts, termed visceral clefts, also exist for a time on either side of the throat, while the series of solid parts left between them are named disceral arehes, along the inside of which proceed the arteries just mentioned n.s arching up on either side of the throat. These conditions are very fish-like.

The skeleton is at first represented only by stretches of membrane, afterwards by these and by cartilages, and only finally by bones. Instead of the series of vertebre which later make up the back-bone, there is at first only a continuous gelatinous rod, called the notochord or chorde dorsalis. The bones are at first much more numerous than those which are found distinct later in life, especially in the cranium. Finally, before hatching, a corering of feathers may be formed which is very different from that of the adult, and is sooner or later cast off.

At a very early stage of this process a membrane grows up around the embryo, and the upgrowths meeting together above it, unite and enclose it. This membrame is called the ammion, and it is filled with fluid-the amviotic fluid-wherein the embryo lies as in a water-bed.

Another membrane grows forth from the ventral surface of the embryo's body, and spreads out on all sides of it immediately within the egg-shell. This is called the cllantois, and is the bird's breathing-organ while developing within the egg. The egg-shell is porous, and allows air to pass through, while blood-
ressels from the bodr ramify orer the allantois and there receive that puritication and oxygenation wherein the process of respiration, as before said, consists.

When ripe for leaving the whell, the young Bird pecks at and cracks it, being often aided, as in the chick, by a small hard prominence on the beak, which subsequently disappears.

It may be useful here to note a few points as to the development of the arteries and the skeleton.

Five pairs of arteries arch up on each side of the neck in the cmbryo, to form by their junction the aorta. The chames they undergo have been described as follows :-

The first and second pairs soon disappear.
The third pair gives rise to the carotid arteries.
The right arch of the fourth pair persists as the arch and trunk of the aorta, and the left arch, as the left subclavian artery.
The two arches of the fifth pair become the pulmonary arteries.
Since, howerer, there are such great differences in the adult condition of these resseln, it is hardly to be expected that there should not also be divergences in the modes of their develop)ment.

As to the skeleton, its primitive axis, the notochord, becomes invested with cartilage which subsequently segments, and then points of ossification begin to form the vertebral centra, and gradually the whole vertebræ are sketched out.

In a later but still young condition of the skeleton, the little ossicles which are attached to the transerse processes of the cervical vertebre are all distinct, and show their essential nature as small ribs each with its tubercular and capitular process.

The sacrum also reveals its essential composition by the distinctness of its component parts, as may be well seen in the Ostrich (fig. 149).

The candal vertebre later on anchylose together to form the "pygostyle" *.

The sternum is not at first a single osseous structure, but is made up typically of five parts. One of these forms the keel. Another on each side in front is the bone with which the sternal ribs articulate; while the hinder lateral parts of the stermum are formed by yet another on each side behind.

[^39]The skull, in its earlier condition of cartilage and membrane only, is thus conditioned :-

There is a median mass of cartilage which invests the anterior end of the notochord and forms the base of the cranial cavity. The sides of this investing mass extend upwards and meet above, the internal eass being enclosed in these uprising lateral cartilares. From the front of the median investing mass, cartilage extends forwards in the direction of the middle of the upper mandible, and from this a median and two lateral extensions of cartilage momt upwards in the position where we subsequently find the median and lateral ethmoid bones. There is also an extension upwards from the investing mass on either side, in the place where we subsequently find the alisphenoid. From the investing mass, four bars of cartilage (on each side) pass forwards or downmards. The first of these lays the foundation of the pterygoid and palatine; the second becomes a lateral half of the lower mandible. The third and fourth go to construct the heroid-the thyro-hrals being ussifications in the fourth descending lateral bar of each side.

The roof of the cranium is completed by membrane only.
In this membranous and cartilacinous cramium various distinct points of ossification arise and lay the fomdation of what at first are separate cranial bones. As these bones grow, they soon meet together, and their lines of junction are the "sutures" of the skull. These still remain pretty distinct in a Chicken till it is nearly two months old.

Ouly in the young, even of Mammals, can we clearly perceive the distinctness of the three bones which together form the continuously anchylosed "periotic capsule," the mames of which are: "prootic," "epiotic," and " opisthotic."

The prootic is the most anteriorly situated of the three, and shelters that one of the three semicircular canals * of the labyrinth which is called the "anterior semicircular canal." It also forms the upper margin of the "fenestra ovalis" and the whole of the foramen throuch which the anditory nerve passes to the car-mamely, the "meatus auditurius internus."

The opisthotic is the most inferiorly situated. It forms the lower margin of the "fenestra ovalis," and entirely surrounds the " fenestra rotunda."

* See ante p. 221.

The epiotic is superior and posterior, and shelters the posterior semicircular canal.

The two latter bones anchylose with the occipitals next to them behind, before they anchyluse with the "prootic."

The earlier condition of the limb-bones of birds serves to reveal their essential composition. Then we find the four carpal * bones and all the three metacarpal bones distinct.

Similarly in the leg we find the two tarsal elements distinct which in adult life respectively anchylose with the distal end of the tibia t and the proximal end of the tarso-metatarsal, and the last-named boue plainly shows how it is made up not only of a tarsal element, but of three metatarsals also.

The wonderful eg-laying capacity of the domestic Fowl is notorions both for its duration and the number laid in a nest. Wild Birds of the Fowl and Pheasant kind will also lay a conwiderable number of egos. Many small Jiirds lay and sit on eight or ten eggs, and many Birds lay only five or six. Pigeons las but two, and the same is the case with IIumming-birds, while the Petrel and the Penguin lay but one.

The size of the e!!! is not strictly related to the size of the individual which lars it. Thus the Apteryx, though only about as large as a moderately sized Fowl, hays a very large ege. The Guillemot and the Raven are Birds of about the same size, but the erg of one is ten times the size of that of the other, that of the Guillemot being as big as that of au Eagle.

The shetpes of eytys also differ considerably. Thus those of the Owls are nearly round, while those of the ITeron and sandgrouse are elongated with both ends nearly equal in size. Everyone linows, on the other hand, that the Plovers egg is pear-shaped, and some of the Guillemots lay eggs which attenuate very rapidly towards the smaller end. In the Grebes the eggs are pointed at both ends, although very wide in the middle.

The grain of the shell is different in different species. It is

[^40]sometimes so fine that the surface of the egg is quite wlossy. Those of the Tinamous lonk like glazed porcelain. Some other Birds, however, as the Grebes and the Pelicans, lay eugs covered with a chalky film, often thick and with calcareons protuberances. The eggs of the Stork are more or less granulated or pitted on the surface: and those of the Ostrich of Gouth Africal much more so, though, strange to say, the euges of those of North Africa have a smooth unpunctured surface. Ducks lay eggs with a greasy exterior.

Eggs have commonly a special ground-colour, the intensity of which seems to increase with the strength and vigour of the individual. Upon this a variety of markings may be superimposed as small speckles, or round spots, or irrersular hlothes or spiral streaks. The colour is not invariably the same in all the eggs laid by a bird in one season. Thus the Tree-sparrow seems always to have one egre different from that of the rest laid in the same nest. The Guillemot is quite exceptional for the extraordinary amount of variation in the colour and marking of its eggs. There is a great variety of coloration in the class. Professor Newton affirms that hardly a shade known to the colorist is not exhibited by one or more, and some of these tints have their beauty enhanced by their harmonions hendines, or by the pheasing contrast of the pigments which form markings, often most irregular and often regular in shape.

For the most part coloured eggs are laid in open nests, and white eggs in corered nests ; but white exgs are sometimes laid in open ones, as by Ducks. On the other hand, some spotted and coloured eggs are laid in covered nests-as by the Jackidaw, the Magpie, and the Grass-warbler.

The changes of development in the egge can only go on at a certain temperature, to mantain which birds sit on their egrs, or, as it is called, incubate. The period of incubation raries, and is much related to the size of the birds. The egg of the Ostrich requires to be incubated for from fifty to sixty days, while that of the Wren needs but ten days. Mostly it is the Hen which sits, the male often bringing her food; often, however, the two sexes takes turns in incubating. In some birls the male is said to incubate, as in the Cassowary and Emen, the Australian Frogmouth (Eurostoporlus: allooguteris), and the Ostrich.

With the Cuckoo, however, both sexes awoid the labour

[^41]altogether, by laying in the nents of other Birds, a practice facilitated by the small size of their eggs.

One brood annually is the rule with Birds, though many hatch two or even three broods in the year.

Parent birds sometimes assist their unhatched brood to break the shell when ther hear the cry of the joung one within it.

The only Birds which neither incubate their eggs themselves nor provide them with foster mothers, are the mound-building birds of the Australian region, such as Megaportius. Ther raise, as before said *, large heaps of vegetable substances-refuse of all kind-and earth, and therein deposit their eggs, which are hatched by the heat produced through such an accumulation of decaying and slightly fermenting matter. Their eggs are large, and the roung developed in them are so fully formed when hatchec, that they can not only force their way to the surface of the mound, but having reached it can fly away at once for short distances.

Some species lay their egos in the loose hot sand of the beach (above high water-mark), where the rays of the sun suffice to hatch them.

Birds differ much as to the state of development in which ther are hatched. Nany are born nearly naked and helpless, and require good sheltei till they acquire feathers, as is the case, $c .!/$, in the Canary and the Sparrow. Others, like the Heron, are bom nearly naked, and acquire a downy covering before they acquire feathers. Others again, like the Hawls, are born helpless but covered with down; while yet others, like the Chicken, are hatched covered with down, and can run about at ouce. Birds of the latter kind are said to be precercions. The most precocions of all are the Mound-builders above mentioned.

Young birds are assiduously fed by their parents, and the crops of Pigeons secrete a mutritions fluid which the joung partake of, extending their heads domn the gullet of one or other parent for the purpose.

The relations of the colours of the plumage of the young and the adults of both sexes, and the process of moulting, have been already noted \uparrow.

Nidification.-As country boys know, the shapes of, and the materials used in making, the nests of Birds are different in different species. Some make carefully made covered nests,

[^42]some carefully formed open ones, some very rough open ones, and some make none at all. Thus the Guillemots are content to lay their single egg, without shelter or protection, on the maked surface of a ledge of rock, where its conical shape, however, affords it a certain help in retaining its place.

The Penguin is said to carry its one egg about with it in a sort of ponch of the skin of the belly; reminding us of the Kangaroo amongst beasts.

The Goatsucker and the Stone-curlew lay their egos on the ground without any previous arrangement for their protection, though they are efficiently protected by careful selection as to their surroundings. Many Gulls and Plovers lay their eggs in a shallow pit. Pigeons only make a nest of a few sticks loosely put together. Grebes collect regetable refuse and pile it on some growing water-weed and lay on it. The mounds built and supplied with refuse by the Itcupotius have been already described. The Magpie makes a domed nest which bristles with thorns. Some birds make use of burrows, as does the Burrowing-owl (Speotyto comicuturia) and the sand-martin; while our Kinglisher genemally makes a so-called nest with fisthbones ejected from its stomach, thus differing widely from the Sand-martin, which makes a "feather bed " in the bottom of the burrow it breeds in. The Woodpecker makes use of a hole in a tree-trunk, which it perforates. Many small Birds seem to moisten and glue together the twigs and straws of their nest with their saliva, but the adhesive nests of the House-martin are known to all. Some Swifts, however, secrete a saliva which rapidly hardens, and so construct a sort of isinglass nest, which is the material whereof "birds"-nest soup" is made.

The Chaffinch and Goldtinch make admirable open nests. but the Wren makes a domed one. Some domed and corered nests have a pendent, cerlindrical tube, which has to be traversed to reach the nest's interior.

The Indian Tailor-bird (Orthotomus Tongicturla) selects a hroad leaf, and sews the edges together with thread-like fibre. The hollow interior it lines with fine grass and vegetable down.

The female Hornbill retires into the hollow of a tree, the opening of which is closed in by her mate with a partition of mud, which drying, forms a solid wall, through an aperture left in which he assiduously feeds her and her young.

As a rule, only those birds in which the female is dull coloured make open nests. Certain Birds in which both the sexes are
bright (as the Kingfisher), or both dull (as the Swift), build in holes or covered nests; while others, in which the female is the duller, make covered nests, as especially in the genus Malsmes.

The Sasammah Cuckon (Crotopherge ani) is said to be a social nest-builder, several Birds using a nest in common. The Weaver-hirds of Africa, however, practice the most curions, social nidification. They form nests associated together in large masses, which are pendent, with a stocking-like entrancefumnel, by which they better avoid the attack of suakes. The Birds construct together the general cover which is common to and protects all their nests. Then, moderneath this cover and suspended from it, they separately form their individual nests placed closely side by side. New nests are amually constucted beneath, and suspended from, the older ones, till the whole mass becomes too heavy for their support and gives way. Then the labour is recommenced in another locality.

Is everyone knows, the Cuckoo builds no nest, but places its egrg in the nests of other Birds. The same is the case with the Cow-bird of the New World (Avothers preoris), and the Argentine Cow-bind (Molothrus honariensis) is singularly irregular in its modes of laying. But some other birds occasionally do the same, from stupidity or otherwise, Pheasauts' and Partridges' eggs being often laid in the same nest.

Generally each species adheres to one mode of nidification, but sometimes this will vary. The Heron will breed in trees or in open fens, according to circumstances, and the Falcon and Golden Eagle will show an aualogous versatility from rocky cliff to plain. The Water-hen will often build in trees in districts liable to sudden floods.

The male very often sings zealously while his mate is sitting, his song stopping short when the eggs are hatched, thongh it will be renewed should the young be destroyed very quickly, the female then laying again, perhaps in a new next. Some Birds, however, as the Robin and the Wren, will sing their song all the year round, save at moulting-time and in severe weather. Nkylarks and Thrushes also sing after their moult, but their notes have not the force and melody of the spring, and, indeed, the sounds uttered by Birds are specially related to the breeding-season, whether those sounds be irhistles, screams, hoots, bleatings, drumming, or booming sounds, or whatever they may be. Akin to these vocal utterances
are also the curions antics and contortions of body which many Birds affect at the time of courtship, as notathly do the Capercalzie, the Gronse, the Blackcock, and the C'ock of the Rock. It is then the Peacock is seen in all its pride, and it is probably for courts!ip that the Bower-bird makes its singular structure of twigs set on end in two rows, with shells, bright feathers, or other conspicuous objects, disposed at the month of its curious avenue.

The Migration of Birds.

Ereryone knows that various Birds which are with us in the summer (such as the swallow and the Cuckoo) leave us before the near approach of the winter season, returning to us with the warmeth of spring, to breed and hatch their young. 'This annual movement is "migration," and is a far more general practice than is ordinarily supposed, if, indeed, it may not he said to be to some degree universal.

Many Birds which are not commonly thought to migrate at all, as the Robin and the Song-Thrush, ret do so to a sreater or less degree in some localities, though in others this may not be readily perceptible. Such species are called "purtict migrouts." Birds have exceptional powers of changing their dwelling-place with ease, and mutations of temperature with diminished supplies of food seem to determine a movement to warmer climes. Many birds are for us vinter misitunts, that is, breed in the North and visit us in the winter; while others breed with us, as does the Nightingale, and are winter visitants (that is, pass our winter months) in more southern climes. Some Birds not only breed to the north of us, but are not content with the conditions found in England during the winter, but pass beyond us to southern latitudes. Such Birds as never make any prolonged stay, though passing us each way on very prolouged annual journeys, are distinguished as "Biods of passaye." Sometimes Birds collect in large flocks before leaving, as do the Swallows; but most species slip away almost unobserved. The same species does not, however, behave, in this respect, invariably in the same way.

Migration takes place in part at night, and various anecdotes have been told of the multitude of passing Birds, giving abundant evidence of their passage to the ear, though darkness may make them imperceptible to the eye.

The extreme punctuality of Birds in their migrations is often rery remarkable. This is especially the case with Water Birds. Whaterer may be the weather, the l'uftin has been noted as arriving on the very day it was, from previous experience, anticipated.

The motive of the return northwards is more mysterions than the impulse which drives Birds south. The latter may be explicable by growing scarcity of food. The former can as yet be only regarded as the result of an instinctive longing to return to a wonted hame. The accuracy and perseverance of this retum has often heen observed, but never better than by I'rofesour Newton. Ite tells * us: "A pair of Stone-('urlews (OElinemus copitnns)-a very migratory species, affecting almost exclusively the most open comntry-were in the habit of breeding for many years on the same spot though its character had undergone a complete change. It had been part of an extensive and harren rabbit-warren, and was become the centre of a large and flourishing plantation."

It appears that migrating birds often pass along the coasts of countries which lie in their line of march. Thus it is said t. that some skirt the west coast of Norway as they pass from Niberia to us. River-courses are ako preferentially followed. Others leave Northern Russia, skirt the (iulf of Finland to Ilolland, then pass by the Valleys of the Rhine, and aloner the consts of Trance and Spain, to Africa.

The way in which migration in accomplished remains still unexplaned. It has been said to be due to past "experience" of landmarks, but how ean that guide birds in their first year that do not migrate in companies? How can it account for the great distances of sea which are so often successfully traversed ?

There are some Birds which migrate irregularly, as do the Crosshills, Nutcrackers, and Waxwings. Sometimes birds from distant regions make their appearance in strange localities, as do, e!!. American hirds in Norfolk and Suffolli. Sometimes, also, a migration takes place compamble with the invasion of Europe by the Huns. Such an example we have in Pallas's Fand-grouse, which before 1×63 was only known as an inhabitant of the plains of Tartary, but which has now come to establish itself in Europe and once at least actuall? bred in England.

[^43]
CHAPTER V.

The Genlogical and Geogriphicil Relations of Birdins.

THE relations which different kinds of Birds and their whole class bear to past time is revealed to us by fossil remains preserved in the earth's crust, and by relics found in caves and fissures on its surface. "Fossils" may be either: (1) bones which retain the greater part of their own mineral matter and some of their animal matter also: (丷) Sulstitutes or pesenfomomphes, which are relies the original substance of which has been transformed, particle by particle, into mineral matterferruginons, calcareous, or siliceous; (3) Momelds, that is, a deposit which exhibits impressions-such, $e .!/$, as footprints -made upon it : or (t) Casts, which may be casts of moukls or casts of hollow structures, such, e. !/., as a cast of the cavity of the skull.

The crust of the earth is made up in the first place, superficially, of accumulations of sands, clays, and gravels, which form what are called recent drmsits, and are not comnted as constituting any part of what are spoken of as yncolugical struta, which are classified in three great groups, belonging respectively to three great epochs. The deepest and most ancient group comprises the strata called Primetry or Pelerozoic. The second or middle group of strata is called sccondary or Mesuzoic. The uppermost and least ancient group consists of strata called Terticery or ('etimonoic, upon the uppermost surface of which the "recent deposits" (which are but their modern continuation) lie.

Each of these three great groups is made up of a certain number of subordinate groups of strata, or "formations." Thus the "Palcozoic" rocks are made up of the Laurention, Cumbrian, Silurien, Devonian, Ohe Red Sundstone, Carboniferours, and Permian formations. The "Mesozoic" rocks are made up
of the Triassic, Jurtssic, and Cretuceons formations. To the "Triassic" formation belongs the stratum known as the liew Rell Sendstome. The "Jurassic" formation includes the Liets, the "olite, and solentofien slates of Bavaria. The "Cretaceons" formation comprises the Wedlen, the Lower and bpper (ivenstoul, the Gicult, and the ('hull: The "Camozoic or Tertiary" rocks are composed of three "formations"- the Encone, the Miocenr, and the Plincone. The oldest or "Eocene" formation underlies both Paris and London, and exists as very important deponits in North America. The "Miocene" formation is widely distributed in Europe and the North-American continent, but is rery slightly represented in Britain. To it, however, beloner the rocks which form the (xiant's Causeway and the islands of Staffa and Mull with others. The Pliocene formation is extensively distributed in Europe, Asia, and the United States. In England it is represented by the Norfolk and Suffolk "Crag." The later Pliocene rock-which are often called (buctcrmer!! strata-include the deposits found in the ancient caves of Europe, and those thrown down during what is known as the (ilacial epoch. That a period of intense cold prevailed in geologically recent times, over Northern and Central Europe and the greater part of North America, is shown by the evidences of prodigious glaciers, which hare scooped out valleys, and grooved and scored the surface of hill and dale in those regions. Blocks of stones, called " boulders," are often found scattered about, and seem to have been transported by ice, sometimes from rery great distances.

Geological Relations of Birds.

No remains or traces of Birds have yet been discovered in any of the primary or Palæozoic strata.

Certain "moulds" in the form of footprints were long ago (in 1831) found in Triassic deposits in Comnecticut, but these are now believed to have been made by certain extinct, in many respects bird-like, reptiles.

The oldest undoubted Bird-fossil, or Ormitholite, was found in 1861, in the Jurassic formation, namely, in the solenhoten slate of Bavaria. This Bird is the now celebrated Archuopter!n, which, though provided with loug feathers, differs greatly from any other Bird yet known. It was about the size of a Rook,
and its remains show a bony tail as long as the body, consisting of tweuty separate vertebree with feathers implanted on either side (a pair to each vertebra), for its whole length, and radiating from its tip. It had a strongly curved "furcula" or merrythonght, and a keeled sternum. Its foot was completely like that of an ordinary bid, but in the pinion there were two distinct metacarpal bones and two cursed claws. The wing was provided with long "remiges."

Remains of a Bird, the jaws of which bore true teeth, have been found in sheppey. It has been named Odontorterin. toliapus.

T'wo very remarkable fossil Birds have been discovered in the Cretaceous rocks of North America. One of these, called Ichethyomis, differed from all existing Birds in having the centra of its vertebre concave both in front and behind. It had also true teeth lodged in distinct sockets. Its wings were well dereloped; its metacarpals anchylosed together, and its sternum keeled. The other form, called Hespurornis, had true teeth lodged, not in distinct sockets, but in continuous grooves in the jaws. The centra of its rertehre were saddle-shaped, as in ordinary birds, but its sternum had no leed. Its most extraordinary character, however, was its extremely defective wings, in which the skeleton of not only the pinion lint of the fore-arm appears to have beeu absent, while the humerus itself, though long, was extremely slender.

Some twenty other kinds of Cretaceous Birds have been described, most of them of wading, more or less aquatic kinds. Amongst these are Patcontringa and Telmatolius-allied to the Sandpipers and Rails.

When we adrance to the Tertiary epoch, a number of Birlremains make their appearance.

Amongst those found in the Eocene rocks in Europe are Alethomis and Protornis, the latter resembling a Lark, and Pulnyithulus, reminding us of a Nuthatch; also Cr?yptornis and Hateyornis, which were like Kingtishers. The last-mamed fossil was found in the Isle of Sheppev, where also Lithornis was found, which seems to have been allied to the modern American Vultures of the genus C'uthartes. A gigantic Wading-bird, called Gastornis, of the size of an Ostrich, has left its remains in France. An Eocene Woodpecker, Uintomis, has been found in America.

[^44]In Thosene times it is frident that a mulritude of speries flourished very like those now existing. The fama of Europe was then emriched with various kinds which are now more tropical, including Trogons, African Parrots, and Eastern Notoris. In America, a Turkey then already existed. The Birds Which have left their relics in Pliocene strata ahost all helong to sencra now existing, and some even to existing opecies.

Caves and recent deposits have made linown to us various Pirds more or less allied to the existing Ostrich or Emell or Apteryx. In Bazil there is a Rhea larger than either of the existing species.

The remains of othor remarkable Birds have heen found in the same deposits. Amongst them is Herperyornis, which was a Bird of prey of so great a size as to have been able to prey upon the largest kind of Dinomis. Also a gigantic (joose, C'memiornis. An extinct lind of Emeu (Diomeornis) has also beeen found in Australia.

We have ahready spoken * of the Dodo and Sulitaire as Birds which have becone extinct in historical times, as also of the Dinnruis, LEpyornis, and Great Aukt. Other Birds which may be mentioned are a crested l'arrot (Lophopsittuchs), a long-billed kind of Rail (Aphemepteryw), and a curious Starling (Fregilupers ('friors), all formerly inhabitants of Nauritius. This starling existed there till some forty years ago, and a specimen of it is preserved in the British Museum: as is also a large Duck (Sumbteriulethoulurel), the last known example of which appear's to have been killed in North America in 1852.

A Parrot (Xistor mrorluctus), which inhabited Phillip Island, near New Zealand, appears to have become extinct within the last few years.

Geograpiical Relations of Birds.

As to the Geography of Ornithology, we have alreadr, in our introductory chapter, said a good deal about the distribution over the earth's surface of a considerable number of Bird-groups.

Our aim here, howerer, is to endeavour to point out what are the main egeographical divisions, Ornithologically considered, Which the world can he divided into, and then to indicate some of the more interesting or important groups of Birds which

[^45]respectively belong to such geographical divisions. We have before spoken of groups of Birds; we will now speak of regions.

The world is thus divisible into six great " rewions," termed (1) Palaarctic, (2) Ethiopian, (3) Indian, (4) Nearetic, (5) Neutropical, and (6) Australian *.

The PALEARCTIC region includes Europe, with Spitzbergen, Iceland, the Azores, Canaries, and Madeira, Africa north of the Sahara (save that Tripoli and Egrpt blend with the Ethiopian region), Asia north of the Indian (Ocean and the Himalayas, including Afghanistan, Persia, and, possibly, Belochistan, with Asia Minor and Syria (save the Valley of the Jordan). Eastwards from the Ilimalayas it includes China north of the Yang-tze-kiang, at least the northern island of Japan, and the Kurile Islands.

This great region is divisible into "s subregions," as follows:I. The Europecte, and II. the Meditercmeo-Pisic, as described below t.

The ETHIOPLIN region is composed of Africa south of the Palacaretic region (or south of the Sahara, with more or less of Tripoli and Egrypt), the ('ape Verd and other islands, including St. Helema, Madagascar, Mauritins, and Remion, the Seychelles and Socotra; and also Arabia and the Valley of the Jordan \ddagger.

The subregions of this region are:-
I. The Lilyutu, or all the northern part of the Ethiopian region-that is to sary, a little to the north of 10° North latitude to the Nile basin, which is included in it as well as Abyssinia.
II. West-African or Ginimen subregion-that is to say, the West-African coast from Sierra Leone to the Quanza, and thence eastwards to the Nile watershed in the north, its eastern boundary sonthwards of this being as ret uncertain.
III. The south-ifrican or Cuffrerian subregion, or Africa south of the (Quanza and the morthern watershed of the Kambeni, with St. Helena.

* This division was first proposed by Mr. Sclater, F.R.S. (see Journal of Limnean Society (Zoology), vol. ii. pl. 130-145). I'rofessor Newton, F.R.S., has published an admirable article on this subject under the heading "Birds" in the last edition of the Ency. Brit. Of this article we have made much use. We have also made use of Mr. Wallace's work on the ' Geographical Distribution of Amimals,' and of the aid of Dr. Bowdler Sharpe, F.Z.S.
+ See p. 242.
\ddagger This valley possesses an Indian genus of Owls, namely Kctupa.

IT. The East-African or Mozumbique subregion, including East Africa between Abssinia and the watershed of the Zambesi, and extending for an uncertain distance westwards.
I. The Mutedugscter subregrion, or Madagascar and the more adjacent islands.

The INDIAN' region comprises all India south of the IImalaya and the rest of Asia south of the Iang-tze-kiang, with the sunthern part of Japan and the Indian Archipelago down to and including the islands of Bali, Borneo, and the Philippines.

This vast region seems to consist of two subregions:-
I. The Into-(hincse subregion, being the Indian Peninsula or the Indian region north of the Malay Peninsula.

1L. The Matayan subregion, or the Indian region south of Tenasserim, with the Philippine and sunda Islands, but excluding (elebes and islands east of the line drawn by Wallace *.

The NEARC'TIC' region consists of North America down to about the Tropic of Cancer in the lowlands, but much further south along the momatains of Central America. It also includes the Bermudas and the Aleutian Isles. The latter, however, like Alaska, show a Palæarctic element.

This region camot be satisfactorily divided into Omithological subregions; but certain districts, or provinces, may, for our present purpose, be distinguished as follows:-
(1) A Culifornien province, including Calitornia, Oregon, and the narrow tract between the Sierra Nevada and the Pacific.
(2) An Allegfanian province, including the United States east of Texas, and thence northwards more or less near the line of 1 (1) West longitude and the south-western part of Canada.
(3) An Alasken province, or what was Russian America.
(4) A C'uncelian province, or C'mada, except part ou the south-west.
(5) A Turen prorince, or Texas with the adjacent parts of the Nearctic region between the Califormian and the Alleghanian provinces.
(6) A Grreenland province.
(7) A Bermuda province.

The NEOTROPICAL region includes the whole of South America, Central America, South Mexico excepting the central plateau, the Autilles, Galapagos, and Falkland Islands.

[^46]It is made up of six subregions, very imperfectly defined as yet:-
I. The Patagonian subregion, or Tierra del Fuego and the Continent thence northwards to a little north of Bahia Blanca on the East coast, and a line roming thence north-west, east of Mendoza to the Andes; also all the higher slopes of the Andes to north of the Equator, and the laud west of the Andes from about Truxillo southwards, including the island of Chiloe and the other islands back to Tierra del Fuego.
II. The Brazilion subregion, or the Continent east of the last subregion to Potosi, and thence north-east, south and east of the watershed of the Amazons, to the mouth of the Paramahyba.
III. The Amuzoniun subregion includes the basin of the Amazons as far west as the tributary of it named the Ifuallaga, from the mouth of which its boundary passes obliquely and irregularly to the mouth of the Orinoco.
IV. The I'cruvian region, consisting of the lands intervening between the Andes and the Brazilian and Amazonian renions, together with the rest of the Continent north of Truxillo and the Orinoco, the Galapogos Islands and those of Trinidad and Tobago.
V. The Central-American subregion, or the remion from the Isthmus of Panama to the boundaries of the Nearetic region.
VI. The Antillean region, or the West Indies excluding Trinidad and Tobago.

The AUSTRALIAN region is made up of Australia, Tasmania, and New Zealand, with the Moluccan Archipelago, up to and including the island of Lombock, with Celebes and the islands of the Pacific to the Sandwich Islands in the north.

It is divisible into four subregions :-
I. The Pupacin subregion, or New Guinea and all the islands belonging to this region, as far as and iucluding Celebes, New Ireland, and the Solomon Islands.
II. The Proper Australian subregion, or Australia and Tasmania.
III. The Polymesiun subregion, or the islands from New Caledonia, Fiji, and the New Hebrides to the Society and Sandwich Islands.
IV. The New-Zealand subregion, or New Zealand with the Norfolk, Chatham, Auckland, and Macquarie Islands.

The number of species which migrate and the extent of their migrations may appear to oppose a great difficulty to the group-
ing of birds in geographical regions. Nevertheless this difficulty is obviated by the rule that the breeding-place of a bird is always to be considered as its real home.

The absence of any considerable or siguificant Ornithological group is often as important and as interesting a character as is constituted by its presence in some other region, and it may be much more interesting and important if the group thus missing is otherwise cosmopolitan or nearly so.

Tie Palemactic Regiox is one in which it is very difficult to indicate characteristic forms as present, though it would be easv enough to enumerate extensive groups elsewhere to be found which are absent from it. Thus there are no Parrots, no Humming birds, no Hornbills, no Toneans, de., de. But to enumerate such absent forms would be an idle task. Their absence will be noted in recording the presence of such birdgroups in other regions. On the other hand, the number of birds of the Palaarctic region which are also found in North America is very great, there being at least $1: 8$ genera common to both these territories, includiug Thrushes, Crosslbills, Magpies, Goatsuckers, Woodpeckers, Swallows, sinowy Owls, Jerfalcons, and a multitude of other kinds. Waxwings, Magpies, Snowy Owls, Jer-falcons, Crossbills are just as characteristic of the Nearctic region; but the Goatsuckers and Woodpeckers are of a different type in the two regions.

Atmost the only group which may be said to characterize the Paliearetic region positively, is that to which the Bearded Titmouse (litnurus biatrimicus) belongs (but its species are very widely diffused through it from East to W'est). The true Hawfinches (C'orecothrectustes) are also characteristic. Of course it has peculiar genera and species. The most conspichous is the (apercailzie, but many Finches and Buntings are confined to it.

As to the subdivisions of the Palearetic region, the Enropectin subregion-which consists of Europe north of the Prrenees, Alp:, Balkians, to the Caucasus and Asia north of the desert-tract of C'entral Asia, and including the northern island of JapanLhas an ahundance of (Gronse, Capercaizzie, 11:zel-hen, Blackgane, and plenty of peculiar Buntings, Warblers, and Finches -notably Corcothuccustes. The genus Eurymorlynechus is peculiar to Siberian lands.

The other division, the Mectiterreneo-Persic subregion-which extends from Europe south of the Prrences, Alps, de.. to the Amoor-has many peculiar Chats and shrikes, and it
possesses Sand-grouse, Larks, and Warblers. Tery many of the commoner forms in the North are represented by allied forms in this subregion. Pheasants also abound in its more eastern part. It has Vultures, Pelicans, and Flamingoes, which are wanting further north. Nevertheless it is not quite distinctly divided off, becanse peculiar Himalayan elements crop up again in Turkestan and the Altai Momitains-various Grosbeaks, Flycatchers, Rose-Finches, \&c., \&c.

Tine Einiopinan Region is, as might be expected, an extremely rich one, and has whole families of birds absolutely peculiar to it. Amongst these are the Musophumidre, or Plantain-eaters, the Colies, the Irrisorider, the Guinea-fowls, and the Secretarybird, while it is the special home of the Ostrich. It possesse's also Sum-birds, Hornbills, and Weaver-birds, though these are by no means confined to it

In the Lithon subregion we meet with a sum-bird and an African genus of Starlings (Amydrus), extending northwards into the Valley of the Jordan. One of the most peculiar of the Birds of this subregion is the Bulanictes* (of the Upper Nile). In Esept the avifana alternates with the seasom, the Xile valles being overrm with migrants from the Palaaretic region during the winter.

The West-Africen subregion is a very rich one t; but its distinctive forms can hardly yet be emmmerated satisfactorily. It has a Pitta (a Malayan element), and several Babhling-thrusher; allied to Indian species. It has three species of Gevinea-fowl, and the (iree Parrot (Psitterms) has been said to bave driven away all dimrial hirds of prey from Prence's Lstand. Nix species of bieds are known to be peculiar to the island of St. Thomas. It is essentially a forest region- the home of the (iorilla and the Chimpanzee.

The Sumth-ffricten subregion has not rery many peculiar forms, but Chutops, many Chats, Larks, and Dipits are peculat to it, and it is the head-pmarters of spereies which range into other subregions, as, e $!!$, Indicutor. The Secretary-bird appears here as a semidomestic one. In St. Helena is a rate of Rimged

[^47]Plorers (AEgialitis sanctr-helenw) which is found nowhere else in the world.

The Eust-Africtu subregion has rather complex relations with the three subregions already described; but many absolutely peculiar forms have not yet been satisfactorily determined.

The Minctuyusear or the Mascaren subregion, which is so very peculiar in its beasts, posserses also, as might be expected, a very distinct avifauna.

A lare number of genera are peculiar to it. More than two hundred species of birds are known to be its inhabitants, of which 120 are land-birds, five-sixths of which are absolutely pecular to the island. But it contains ordinary as well as peculiar kinds, and there is a slight Malayan element, and also some British species. The now extinct Dodo, Solitaire, and Epyornis* were birds of this subresion. The Dodo inhabited Mauritius, the Solitaire was found in Rodriguez, and Epyornis was peeculiar to Madagascar itself. In the smaller islands sereral other kinds of birds have also recently become extinet : while their remaining avifama is rery distinct. Thas Professor Newton aftirms that, though Mauritius and Reunion lie within sight of each other and possess about the same number of species, they do not appear to possess more than three in common.

The Indine Region is the home of the most gorgeous Gallimaceous birds- the Peacock, the Argus, Fire-backed, Polyplectron, and other Pheasants. It is also the home of the Jungle-fow, and possesses exclusively most of the Asiatic Ilombills. Sunbirds are found throughout the region, with Barbets, Cuckoos, Bee-eaters, brilliant Kingfishers, the glossy, noisy Mynahs (Enlule:), and more than twenty peculiar genera. Indeed, three whole families of birds-the Hill-tits or Liotrichictr, the Bulbuls or I'ycnonotider, and the Broadbills or Eurglemideare peculiar to it.

Of its two subregions, the Mfelaygen one is distinguished by exhibiting some striking and interesting approximations to the bird-fauna of the Australian region. Thus in the Philippines We have a Cockatoo of the Australian genus Cacatua, and there, as well as in the Nicobar Islands and Borneo, the Australian mound-building Megapodius is met with. Hornbills are very characteristic of the subregion, as is likewise the Argus Pheasant,

[^48]which is, however, also found in Siam. Mure than thirty-six genera are peculiar to this subregion.

Tine Neabetic Reghos is one which is very poor in altogether pecular genera. On the one hand there is an entanglement southwards with the Neotropical avifann, while on the other there is a great sameness between the Birds of North America, Europe, and Siberia. There is, in fact, a considerable common circumpolar arifama. Ont of three hundred and thinty Nearctic genera, more than one third are common to it and the Palearctic region.

One of the most popularly lonown and truls peculiar of American birds is the Turkey, and everyone has heard of the Canvas-back Duck, the Mocking-bid, and the Passenger Pigeon -which are, in summer, mostly contined to the Nearctic portion of the American continent. Those beatiful and exclusirely American forms-the Humming-birds--make their appearance even in the northern part of the Nearctic region, although, of course, they become more numerous southwards. The most characteristic family of the Nearctic region is that named Mniotiltike, which contains brilliant little Warblers, which take the place of the Old-World Sylvirde.

Altogether there are about twenty-four genera of birds absolutely peculiar to the Nearctic region, and besides these there are twenty-seven genera which have their home in it but migrate in winter to the Nentropical region, the relation of the avifamas of these two regions being in Central America in the winter, like those before mentioned as existing between the l'aliearctic and Ethiopian faunas in the same season.

As to the appearance of different linds in different provinces of this region, it may be remarked as follows:-

A peculiar Wren-like bird, Chumem, held to constitute a sub)family by itself, is peculiar to California, as is also the Crested Partridge (0reortya picta) and the great C'alifornian Vultureexcept that the latter ranges somewhat more northwards.

In the Allcylumicu province we find the only North-American Parrot (C'onnous carolinensis) and the Mocking-bird, while it is the main home of the Passenger Pigeon. Turkeys in the Palearctic region are ouly found eastwards of the Rocky Momentains, and are now extinct in the settled districts of Pemsrlvania, New England, and Canada. Flamingoes are found in Florida, where alsoa Pelican may be met with, and another in C'alifornia, and a Darter, in summer, ascends to North Carolina and Illinois.

The avifama of Alustion is very largely Palaretic, only twenty genera out of sixty-three are peculiar to America.

Amongst the more northern birds are the Divers, not appearing to breed south of $45^{\circ} \mathrm{N}$. latitude.

Givernlaul possesses two genera which are peculiar to the Nearetic reqion: but various specces which breed there are of European hinds, as, e. g.. the Sea-Eagle and the Ringed Plover.

The Tropic-birds (l'tatom) breed in the Bermutas. These islands do not possess one pecouliar species; but they form an important resting stage for migrants leaving their northern homes in Labador and (ireenland for warmer winter-quarters.

Tine Neotropical Region is perhaps the richest of the whole world, and only yields to that next to he noticed (the Australian) in the perouliarity of its avifama. Not less than twenty-four families are absolutely peculiar to it, while eight others are almost, so, only, as it were, stragrling into the Nearetic regrion. Amongst the most remarkable of its peculiar familes are the
 mots (Itrmoticler), the 'Todies (Torlifte), the 'Tinamous (T'ime-
 and the sereamers (Pedumedicter). It is also the exclusive home of the Condor, the Sum-hittern, the Cariama, the Rheas, the true Nacaws, and a multitude of Humming-birds, forming one hundred and fifteen genma. The Curassows are almost entirely Neotropical, and, altogether, there are something like six humdred gemera which are absolutely peculiar to this region.

The Patmenonitu subregion is specially remarkable for its Rhoras and the Pemguns of its shores. 'The family of Plantcutters (l'hytotomide) is ahnost peculiar to it, and altogether there are ahout forty-six genera of birds here fomm, but not formd in any other of the six subregions. It is a curious fact that each of the two chief islets of the Juan Fernandez group has a Chilian Humming-hird as well as a species peeculiar to it.

Ther Fiellitend Islamds have about half a dozen peculiar species of birds.

The Brazilien subregion has forty-two peculiar genera. Its fama has much affinity to that of the Amazonian Valley : but it is distinguished partly by the entrance within its southern horders of the Rhea, Cariama, and the Plant-cutters on the one hand and ly the fact that the 1 oatzin, the sum-bittern, and the

Trumpeter, as well as certain other, not less noteworthy, forms, are absent from it.

In the Ammzomien subregion these are found, and it hats altogether twenty-seven peenliar genera. It is rematable for possessing a pecular Goose (C'hemelopex') not found anywhere clse in America, but plentiful in the lithiopian remion.

The Permbien subregion is the only one which pmssesses the Oil-bird (stotormis cteripensis), which is found in Trinidad and considered to form a family by itself. This subrecrion has no less than serent y-f wo peculiar genera, and is erpecially rich in Tanagers and different kinds of Humming-hirds, some of which are so local that a species or two seems almost exclusively confined to the slopes of one mountain.

Thu C'entrel-Amuricen subregion is, as we already intimated, a mixed region, having many intuders from the North. Ont of ninety-three gronera found within it, hut in no other Neotropical subreriom, just more than half are also Nearetic.

The Antillem subremion contains about one hundred and forty genera, of which thirly are peculiar to it, but no less than six are peculiar to C'uba and seren to damaica. The fanily of Todies is entirely confined to this subrecrion; and of its forty other families it shares two with other Neotropical submegions and eight with both the Neotropical and Nearetic regions, while the Frigate-hirds and Trogrons, though found in the Old Workd also, are not present in the Nearetic region.

Tha Acstrabin Recion is that which possesses the most exceptional anifana of all, both with respect to groups here found and found nowhere else, and with respect to widely diffused groups which are here either remarkable by their absence or by having their head-quarters within it.

Thus the whole family of Birds of Paradise, and that of the Bower-hirds ('tilomoshyncheiler), the Lyre-hirds (1/emera), the Broad-billed, the Brush-tonged, and the Grass Parrakeets, the bulk of the Cockatoos, the Emeus, the Cassowaries, the Apteryx, and the Kagn *, are aboolutely pecular to this region, while the Honey-suckers \dagger and the Mound-makers \ddagger are almost so.

The Thick-headed Shrikes (P'uchycephutimer), the Caterpillar-

[^49]eaters (Campopilumpilu), the Flower-peckers (Dicorita), and the Swallow-shrikes (Artumidre), feebly represented elsewhere, are most numerous here, while other groups of wide distribution are here also most rariously and richly developed. Amongst these are the Weaver-finches, those exagereated Goatsuckers called "frog-mouths" or "more-porks" (P'orluryidu), the Pigeons, and the Kingfishers.
'Two fifths of the genera of Pigeons are found in this region, as well as the most beatiful and remarkable forms. Amongst the latter is the Crowned Pigeon ((rowra) and Didnompers. The cosmopolitan family of Kingfishers, which includes some nineteen genera, has no less than ten of them peculiar to the Australian region.

The remarkable family of Honey-suckers (Meliphocticter) is very characteristic of the remion, over the whole of which it ranges, abounding in genera and species; and the peculiar Broad-tailed Parrakeets adorn it by thier gorgeous plumage.

But the absence of other forms from the Australian region is no less remarkable. Thus there are no Pheasants *, which are so remarkably characteristic of the adjacent Indian region, while the specially Oriental Green Bulbuls (Chloropsis) are also wanting, and the same is the case with the elsewhere widespread Vultures (I ulturider) and Barhets (Mequlemidor). The generally abundant Thrushes (Tourdide) are few, while of the three hundred species of Woodpeckers (P'icillor) only four or five penctrate from the Indian region as far as Lombock, Celebes, and rery few Pycnonotider reach the Molnceas.

The Pepueten subregion is characterized especially by its Birds of Paradise, which (save those in Australia) are not found out of it. The northem and western parts vi the subrewion have a considerable mixture of Oriental forms. Thas Timor and the islands grouped round it share about thirty genera with the Indian region, and thirty with the continent of Australia. Celeles has about one hundred and fifts qenera, with ninety peculiar species of land-birds. Of those which are not peculiar, about fifty-five have been estimated \dagger to be Indian and twenty-two Australian.

Neu' Giluef, the Aru Islands, and New Britain are remarkable as the all but exclusive home of the Cassowaries; one only

[^50]being found in the island of Ceram and one in North Australia. Hornbills do not extend beyond the Solomon Islands.

The Austrulicun subregion proper has a very special Avifauna, for out of nearly five hundred land-birds not more than five and twenty at the most are found elsewhere. Amongst the more remarkable absolutely peculiar birds are the Lyre-bird and the Scrub-birds (Atrichiidet), the only two species of Emeu, and all the Bower-birds except the genera Chlemyluder't and Amblyornis, which are both found in New Gumea. It is also the exclusive home of the mound-building genus Leipoce.

Australia has also a peculiar Bustard (Enporlotis). It is very rich in Parrots, and has some peculiar forms.

The Polynesiun subregion, though one so extremely seattered, has nevertheless a very uniform Avifama. Amongst the most noteworthy peculiar genera found therein are the Kagu (Rhinochetus) in New Caledonia, and the Tooth-billed Pigeon (Dirluncetus) in the samoan Islands, whence also comes a most peeviar short-winged Water-hen (I'areutiastes). The sandwich Lslands alone show any very marked distinction, possessing as they do all the Dreponitider. They have twenty genera of small (Passerine) Land Birds. One of them is the cosmopolitan genus of Rooks and Crows (Corves), but nine are absolutely peeculiar to the Sandwich Islands. Amongst them it is to be noted that there are species (of the genera Acrulocercus and Chertoptile) of that spectally Australian family the Honey-suckers. There is also a peculiar Coot and Goose. In Phillip Tsland there is, or was, a Parrot of the genus Nestor (N. productus), which is with this exception a New-Kealand genus; and a curious form of Water-hen, now extinct (Notornis allu), seems to have been last seen alive in Norfolk and Lord Howe's Islands.

The Jew-Zculand subregion consists, as we have seen, principally of New Zealand, which, till the adrent of man, may be said to have heen a very Paradise for Birds; as then they forded it over the rest of the living world, having nothing to fear from any beast of prey, hardly any kiud of DIammal having there existed.

It was inhabited by the gigantic species of Dinnrais, now extinct *, and by the extinct forms Pentaptery, and Eury(e)tery... The most characteristic living form is the Apteryx t, but one also most remarkable is the Owl-like Parrot (strinyols). The

Weka Rail * (Ocyiromus) and a species of the remarkable Water-hen genus Notomis lately mentioned (I. Mantelli) \dagger are also very noteworthy peculiar forms, as is also the Parson-bird (Irosthemaderce norer zelenclie) and the IIvia-bird (Heteralocha) \ddagger.

The interesting genus of larrots-Mestor-is also peculiar to the Island, except the species already mentioned as inbabiting Phillip Island. It is one of those-the Kea Parrot (N. notu-bilis)-which is so destructive to sheep, as we have already stated §. A genus of Ducks (Aesonetta) is said to be peculiar to the Auckland Islands.
$\begin{array}{ll}* \text { P. 63. } & + \text { L. c. Almost if not quite extinct now. } \\ \ddagger \text { See ante, p. } 95 . & \text { § See ante, p. } 73 .\end{array}$

CHAPTER VI．

The Classification of Birds．

T＇HE great multitude of Birds－of which upwards of eleven thousand kinds at the least are known to exist－makes it obviously necessary for those who would study them to arrange or classify them in groups．Otherwise the multitude of species would be too great for our powers of imagination and memory． The arrangement in groups，or Clussificution，of Birds，follows the principles which have beeu adopted in the classification of Animals generally．That system is one whereby creatures are sorted into a series of groups，successively smaller，and more and more subordinate．

Animals，like plants，are，as we said at starting ${ }^{1}$ ，considered as members of one great group，which has been fancifully termed a＂Kingdom＂－the Animul Kinn⿻儿口 animals，as the Tectetulle Kimydom contains all plants．The principles adopted by both zoologists and botanists in subdividing these＂Kingloms＂are＂morphotomical．＂By this term it is meant that the characters upon which these classifications re－ pose，and by which the various subordinate groups are detined， are characters taken from the shape，number，structure，and mutual relations of the parts of which the varions creatures so classified are built up，aud not upon what such parts do－the characters refer to＂structure＂not to＂function．＂

The lingdom of animals is divided into a variety of subling－ cloms，each of which is，of course，a very large group of animals indeed．Each subkingdom is again divided into subordinate groups termed classes．Each class is again divided into orders， and each order is further subdivided into fumities；each family into genera，and each genus into species－a zoological species being ＂a group of living organisms which differ only by inconstant

[^51]and sexual characters." Sometimes when a "class" contains very many or very different " orders," the latter may he arranged in sets, each of which is termed a subleluss. Similarly when there are many families in an order, such families may be grouped in suborders; and sometimes the suborders have to be further divided into sections so that the families which compose it may be arranged in different sets.

When also there are many genera in a family, such family is divided into suldfemilies to receise different gromps of such genera; and rery many "subfamilies", are found in Ornithology.

As we said in our introductory Chapter ${ }^{1}$, all Birds taken together form one class of Vertebrate, or back-boned, Animals, and all Vertebrate animals taken together constitute a primary divison of the Aumal Kinglom called the Subllinentome Tertebiratu. The class of Birds-the class Aves-has been at different periods divided in varions wars. Divisions-more physiological than morphological-were instituted by both Linnams and Cuvier, on the lines of those differences of hahit, and to a certain extent, of structure, which were referred to when we spoke ${ }^{2}$ of the Seratchers and Cooers and ('limbers, and Wiaders and Swimmers, and birds of Raptorial habit.

By Linmeus, Birds were arranged ${ }^{3}$ in six orders:-1. Accipitres (Birds of Prey). ב. Pict (Humming-birds, Hoopoes, Crows, Birds of Paradise, Toucans, Trogons, Parrots, Woodpeckers, Wrynecks, Cuckoos, Barbets, Hornbills, Kingfishers, Flyatchers, Honey-eaters, and Todies). 3. Auseres (Aquatic Birds). t. (irallo (Waders, Ostrich, \&c.). 5. (íallime (Gallinaceous Birds). And fi. P'usseres (all the smaller Birds).

C'urier also arranged Birds in six almost similar orders, as follows :-1. Accipitics (Birds of Prer). こ. Pesserinut (including, with Linneus's Passeres, also the Crows, Birds of Paradise, Humming-birds, Hoopoes, Todies, and Hornbills). 3. Sctansorier (the rest of Limmens's "Picae"). 4. Gellimucer (Gallinaceous Birds). 5. (irallatorice (Waders, the Ostrich, \&c.). (i. I'almipedes (Aquatic Birds).

He ako subdivided his Passerine into sections according to the shape of the beak in the way previously stated ${ }^{\text {'. }}$

These classifications were long ago felt to be unsatisfactory,

[^52]and various attempts at improvement have from time to time been made. It was considered that these groups did not respond to or express those deeper affinities which were deemed to bind various groups of birds together.

The Class of Birds was by no means the only one in which the existence of deep or essential affinities were thought to contradict that system of grouping which the adoption of merely superficial character's had brought about. Not only was it clearly seen that Bats were far more really like Whales than they were like Birds, hut it became manifest that the close association of the exclusively aquatic Dugoner and Manatee with the exclusively aquatic Porpoise and Dolphin was an umntural association.

The wide adoption of the theory of Erolution gave an easily comprehensible explamation of a difference between superficial resemblances and those which were deemed to be deep and essential ones. The latter were thenceforth assumed to be alwars the result of a descent from common ancestors, and certain sigus of genetic affinity. It seemed the easiest thing in the world to discover what the different lines of inheritance had been, and elaborate tables of descent-tables of phyloyenywere rapidly drawn up by ILaeckel of Jena and his followers.

Naturally the great wish of Ornithologists who aspired to become the exponents of more profound views was to discover what were the lines of descent in the class of Birds. It hecame their predominant desire so to classify Birds that their classification should by itself indicate what the main lines of "descent" during the process of Evolution had, as a matter of fact, been. Many zealous and admirable efforts were successively made in this direction. In the meantime, however, the phylogenetic tables, drawn up too hastily for other classes of animals, turned out one after another to be more or less unsatisfactory and untenable.

Nor can it be denied that the efforts of Ornithologists in this direction have been disappointingly destitute of satisfactory and certaiu results. It had gradually become recognized, with respect to other classes of amimals, that many similarities of structure must have had an independent origin, and it had, and has since, become increasingly difficult to discriminate and draw safe and accurate lines between resemblances due to inheritance and resemblances due to some other cause or causes.

In the Class of Birds, the numbers of kinds in which is so prodigious, while the differences which separate them are so
small, it is especially difficult to make this discrimination. Birds, moreover, are "reatures which leave behind them comparatively few fossil remains, while every one now sees that the number of species which have become extinct must be enormous. The best Oruithologists, those even who are the most ardent evolutionists, have come to despair of being ever able to determine satisfactorily what the exact genetic relations of different groups of Birds really are. We think it then not only the wiser counse, but the only course consistent with the interests of the student of science, to ahstain from making any positive assertions as to the genetic affinities of different Bird-groups. ()n the other hand, we do not by any means deny the truth of the theory which would ascribe real blood-relationship to different groups of Birds. We desire to keep an open mind with respect to questions of this kind, and we would advise our readers to do the same. In the meantime we wish to arail ourselves of the most recent labours of Ornithologists in this canse, and to give the greatest weight to characters which may fairly be supposed to indicate real relationship by descent. Characters of the lind rould hare beeu regarded as essential and fundamental ones even before the theory of evolution became popularwe mean characters derived from the form of the skeleton and other anatomical peculiarities and from the mode of the process of the development of the young.

We may thus legitimately speak of "real affinity," "true relationship," and "essential connection," as existing between certain Birds, whether or not a real genetic affinity exists between them. If such genetic aflinity does exist between such Birds, then such a mode of speech has a plain and obvious truth and fitness. But if such genetic aftinity does not exist between them, then such expressions must be understood to denote revemblances such as were rerognized as heing of a "deeper" kind than some other resemblances, before questions of descent had herum to he discussed. A "deep resemblance" of this kind is one which is the sign of a great many other resemblances, whereas a "superficial resemblance" has no such significance.

This great uncertainty as to the full significance of characters which no one can call "superficial," causes the classification of Birds to be a more or less arhitrary onr. The arhitrary nature of "rnithological groupiner is intensified by the habit which has so long and widely prearaled of not even attempting to define the groups by any constant and universal anatomical characters.

The principal schemes for the classification of Birds which have appeared since Cuviers are those which have been propounded by Lilljeborg ${ }^{1}$, Huxley ${ }^{2}$, Sundevall ${ }^{3}$, Garrod ${ }^{4}$, Sclater ${ }^{\text {² }}$, Newton ${ }^{6}$, Reichenow ${ }^{7}$, Stejneger ${ }^{\text { }}$, F'urbringer ${ }^{3}$, Seebohm ${ }^{10}$, Gadow ${ }^{11}$, and Sharpe ${ }^{12}$.

Mr. Henry seebohm deserves exceptional credit for having given us a classification founded on absolute diaguostic characters, by which, for the first time perhaps, the definite characteristics of the leading groups of Birds have been clearly summarized. On this account we gladly avail ourselves largely of his labours, and follow his grouping to a very great extent.

We will shortly proceed to enumerate the principal groups into which we think the Class of Birds is thus divisible, and to give the characters of such leading groups. The classification here offered is, however, put forward only in a tentative manner and with much diffidence, as one which we think may he found practically useful. But, before we proceed to the enumeration of the groups, we would endearour to stimulate and arouse the interest of the Student by pointing out some striking examples of errors into which we should fall, if wore rested content with merely superficial characters, such as we have mainly refered to in our introductory chapter.

Birds may be shortly defined as feathered animals, since no other animals possess such structures. They are, however, Tertebrate amimals with warm hlood and anterior limbs peeuliarly moditied. The skull always articulates with the rertebral column by a single occipital condyle ${ }^{13}$, and the lower

[^53]jaw joins the skull by the intervention of a quadrate bone. The right auriculo-ventricular valve of the four-chambered heart is muscular, and there is a single aortic arch which arches over the right bronchus. The optic lobes of the brain are lateral and depressed, and reproduction is in all cases oviparous.

We put forward, in our initial chapter, a sletch which we hoped might serve as an introduction to the whole Class of Birds. But in our treatment of the subject we deliberately adopted modes of grouping which we thought might be acceptable to the heginner, and which had spontaneonsly suggested themselves to the first teachers and classifiers of our science.

Now that we have, however, made acquaintance with the anatomy of Birds, the time has come to put away the notions wherewith we began, in farour of more advanced riews.

We spoke ${ }^{1}$ of Pigeons immediately after Fowls and Pheasants, and of such they were formerly regarded as allies; but now the study of anatomy has separated these groups widely. We treated " of the Penguin in comection with the Auk, for at first sight these erect flightless Birds present obvious resemblances. Advanced Ornithology, however, places thein poles asunder. Close after the Cormorants we have spoken of ${ }^{3}$ those yet more familiar coast-birds, the Gulls, and after them the Petrels; but we shall see that there is no real affinity between them, though they at first seem alike. Neither has the Frigatebird any close relationship with the Albatross. The Flamingoes and the 11erons, the Storks and the Cranes naturally seem to the beginner akin, but they must be widely separated by the adranced student, and the Horned Screamer of the SouthAmerican forests will by him be brought down to the level of the Goose.

The Curlew and the Ibis ${ }^{4}$, with their long bills, look alike, but mature study shows us that the Curlew is a Plover; while Coursers and the Tinamous ${ }^{\text {s }}$, however to the popular eve they may seem to run in couples, are seen by the scientific observer to have hardly anything in common save their bird-nature and mode of locomotion. However like to an ordinary Plover a Stone-curlew (Ellionemus) may look, it turns out in reality to be far more of a Bustard.

For the sake of the beginner, we have mentioned ${ }^{6}$ the stream-
${ }^{1}$ See ante, p. 12.
${ }^{2}$ P. 22.
${ }^{3}$ P. 28.
${ }^{1}$ See ante, p. 53.
${ }^{5}$ Pp. 50 \& 51.
${ }^{\circ}$ P. 69.
haunting Kingfisher and the Dipper one after the other, but their essential differences are great indeed.

The large beaks of the Toucans have suggested ${ }^{1}$ to us the large-beaked Hornbills, but in truth, as we shall see, they are in no way akin. Nor are the Colies "really allied to Toucans or Todies. The brilliant Trogons ${ }^{3}$ have led us to speak of the Birds of Paradise, but the latter are really nothing but glorified Crows, while the Lyre-bird, on the other hand, is nearly as distinct in its uature as in the form of its tail. The Huia-bird, again, is but a kind of Crow; and the wonderful Opisthocomus turns out to be not miles asunder from a game-cock, being really an ally of the Curassows. The Bower-birds ${ }^{1}$, on further inquiry, prove to be Birds of Paradise, which have taken to decorating their runs instead of their bodies !

The beginner will have deemed it natural that we should follow popular usage and associate the Swallows with the swifts, but his studies will show him that they may have as little in common as have the true mole and the rat-mole amongst beasts.

Creepers and Honey-eaters ${ }^{5}$ hare been mentioned together, but they are not really allied; and the brilliant Humming-birds and Sun-birds ${ }^{6}$, beyond being passeriform lirds, have little but their brilliance in common, aud are really groups rather distant from one another.

The Orioles and Waxwings must also be extricated from the company in which they have been provisionally placed, and the wonderful Mocking-bird will be seen not to rank with the Nightingale, but rather with the Wren.

The Piping Crow, again, is not really a Crow, but a Shrike ${ }^{7}$.
The Osprey ${ }^{\text { }}$ has once more (unlikely as it seems) an outlook towards the ${ }^{\circ} \mathrm{O}_{\mathrm{w}}$ ls ; while the American Vultures ${ }^{3}$ have little affinity with real Vultures ${ }^{10}$ at all, or with Eagles or Owls either, but perch by themselves ornithologically. Thus it is plain what a scientifically heterogeneous group is that which we have spoken of by the term ${ }^{11}$ "Scausorial birds," as also that all those groups which we have distinguished ${ }^{12}$ as having conical, slender, or widely gaping bills are not " natural" groups.

§

Having thus indicated a few of the more glaring mistakes into which the begiuner in Ornithology, if left to himself, would in all probability fall (as our earlier scientific predecessors did fall), we will proceed to point out what we regard as the rarious successively subordinate groups of birds from subclasses down to genera. After each Family or Subfamily we will add a list of the genera belonging to each, with what we deem chout the probable number of species therein contained.

We only offer the classification here proposed, after careful consultations with masters in Ornithology, and for this reason we are persuaded that it will be found to be of considerable use to the student, and a quite sufficient introduction to the systematic study of the Class, or any selected section of that Class.

The whole Class of Birds is divided into two very large, primary groups, each of which is a "SUBCLASS," and which are respectively named Carinatce and Ratitce.

The latter includes only the Ostrich, Rheas, Cassowaries, Emens, and the different species of Apteryx amongst living hirds, but the rarious kinds of Dinornis also belonged to it. All other Birds belong to the Carinatce.

They are distinguished by the following characters :-

Carinatce.

Sternum almost always with a keel. ${ }^{1}$

Coracoid and clavicle so placed as to form together an acute angle.

Ratitce.

Sternum never keeled.
Coracoid and clavicle so placed as to form together a very obtuse angle.

The whole Class of Birds may be divided into eighteen "Orders," as follows :-I. Passeriformes. II. Coraciiformes. ILI. Piciformes. IV. Coccrges. V. Columbiformes. VI. Prittaci. ILI. Raptores. Vill, Steganopodes. IX. Herodiones. X. Alectorides. NI. Galliniformes. XII. Limicoliformes. NIIL. Tubinares. XIV. Pygopodiformes. XV. Lamellirostres. XVI. Impennes. XVII. Crypturi.

The above Orders are all the Carinate Birds.

[^54]
XVIII. Struthiones.
 This last order contains all the Ratitæ.

It is absolutely impossible to arrance the Orders which make up the Class of Birds in any linear series which shall express their aftinities. A few such groups may be placed in justaposition, and then follows an inevitable break. On the theory of Erolution all the various groups now existing are, as it were, diverging twigs from small branches which sprang from lareer branches, and these from others, and so on, till we come to the stem. It woukd manifestly be impossible so to enumerate the twigs of a tree in a linear series, that their linear succession should indicate their relative relationships to the tronk whence they all sprang. Just as difticult would it be to express the genetic relations of Birds by placing them in any linear series whatever, and the same may be said of their depper structural resemblances even apart from the theory of Erolntion.

The first Order, Passeriformes, includes by far the greater number of birds, and all those spoken of in our introductory chapter as Passerine ${ }^{1}$ birds. There are donbtless more than six thousand six hundred species.

Following Mr. Seebohm, we divide this mass into three groups, of approximatively equal rank, as suborders, and name them: 1. Passeres, ‥ Eirellmmi, and :3. Trochili. The third suborder includes all the Humming-hirds and no others. The second suborder takes in only the Broadbills and their allies *, while the first suborder includes all the other P'asserine Birds. The characters of these groups are as follows :-

Subclass I. CARINAT

Order I. PASSERIEORMES.

Perching-birds, the young of which are born helpless and need to be fed in the nest for many dars, yet which hardly erel pass through any downy stage ${ }^{3}$. The hallux is always present as a hind toe, is well-dereloped, separably moveable, and fumished with a larger claw than the others. Wing-coverts somewhat few in number aud rather small; greater coverts

[^55]arranged in a simple row not extending beyond the secondaries; colic creca almost alwars present ; a spinal feather-tract on a consillerable part of the neck, well defined by lateral bare tracts and not split by a spinal hare tract; hind toe supplied by a tendon from the flexor lonyers hallucis ${ }^{1}$; no ambiens or accessor? femoro-cautal; oil-gland present but nude; feet non-zygodactyle: mid-front of sternum not perforated to receive processes of coracoids ; no basipterygoid processes ; dorsal vertebre never opisthocolous ; cerrical rertebræ never more than fifteen.

Suborder 1. Passeres.

Palate xgithognathous ${ }^{2}$; not more than 15 cervical vertebre: tendons of flewores hullucis and Tongus cligitorum not. comnected; mauubrium generally bifurcated; intrinsic vocal muscles mostly fixed to ends of bronchial semirings; lower end of trachea almost always modified into a vocal organ ; bill often long and slender; rarely broad, with very wide gape; hand not very long or humerus rery short.

Suborder 2. Eurylcemi.

Palate ægithognathous: nasals holorhinal ${ }^{3}$; dorsal vertebræ heterocolous ${ }^{1}$: tendous of flexores hallucis and longus digitorem connected; manubrium not bifureated; intrinsic vocal muscles fixed near the middle of the bronchial semirings ; lower end of trachea not modified into a vocal organ; bill alwars very broad, and gape very wide; hand not very long or humerus very short : a large purse-like nest; eggs minutely spotted with brown.

Suborder 3. Trochili.

Palate more or less schizoguathous ; basipterygoid processes ahsent: nasals holorhinal ; thyro-hyals arching over skull, as in Woodpeckers : tendons of flesores hallucis and longus digitorum

[^56]connected; manubrium not bifurcated; keel deep, posteriorly rounded and without indentations; bill always long and sleuder, gape always narrow; haud very long and humerus very short; no semitendinosus or aceessory semitendinosus; only a left carotid present; no cæca.

The enormous suborder Passeres, which contains upwards of $62(10$ species, is divisible into two sections, distinguished as Acromyodi (or Oscines) and Mesomyodi.

In the former the intrinsic muscles of the syrinx are fixed to the ends of the bronchial semirings; while in the Mesomyodi they are fixed to the middle of the bronchial semirings ${ }^{1}$.

The section Acromyodi is much the larger one, and may be said to contain no less than thirty-nine families of Birds.

These families and all the families of Passeres have been limited and arranged by us in accordance with the views of Dr. R. Bowdler Sharpe, F.L.S'., most kindly communicated to us, and they will stand in the order adopted by him, though it is impossible to arrange them, any more than the orders of Birds (and for the same reason), in any satisfactory linear series

The student will see that the family and subfamily names are modifications of the names of the various genera which are respectively the types of such families.

Thus the first family Corvidce is the family of the Crows. The second is Paradiseider, or Birds of Paradise. The third is Ptilonorkynchida, or the Bower-birds. The fourth is Stumider, or the true Starlings; while the Tree-starlings, Eulabcticte, form the fifth family. The sixth family, Eurycerotide, is constituted by a single genus and, as yet, a single species-the Blue-bill. Birds called Drongos, Dicrurider ${ }^{2}$, form the seventh family; the eighth, Oriolide, being constituted by the Orioles. The ninth, Ictericke, is made up of the Cassiques and Haugnests, and the tenth, Ploceilce, of the Weaver-birds. The eleventh family is that of the Tanagers, Tancogrider; and the twelfth is composed of the American Creepers, Coerdicle. To these succeed the Sandwich-Island Honey-eaters, Drepanilidce. The great family of Finches ${ }^{3}$, Fringillida, comes next; while the Larks ${ }^{4}$, Alauclicla, and the Wagtails ${ }^{5}$ and Pipits, Motacillide, make up the

[^57]fifteenth and sixteenth families. The next three families are the Mniotiltice or American Warblers, the true Creepers or Certhiorler, and the Honey-eaters or Meliphargidae; while the twentieth family is composed of the Sun-birds, Nectariniedr., so apt to be confounded, popularly, with the Humming-birds. Next come the Flower-peckers or Dictide, followed by the Whiteeyes, Zosteropidn, and then the attractive families of Titmice ${ }^{1}$ or P'arider, and Gold-crests, Requlicler. The twenty-fitth family is that of the Shrikes, Laniide; after which comes the family of swallow-shrikes, sometimes called "Wood-swallows," Artamider, which consists of only two genera. Then follows the small family represented by our Waxwing ${ }^{2}$ (Ampetictu), followed by the Greenlets or Fireonidit. The Warblers, syluiilta, form the twenty-ninth family, after which come the Thrushes or Turdider ${ }^{3}$ (containing the Nightingale), followed by the Dippers ${ }^{4}$ or the C'inclidet, which seem to be modified aquatic W rens: and far away, indeed, from the Kingfisher in their affinities. Then come the Wrens ${ }^{5}$, Troyladytider, followed by the Mimitar, or Mocking-birds, and the Accentors or Aecentorider. Next comes the thirty-fifth family, or the great family of Babblers, Timelicilo, followed by that of the Bulbuls ${ }^{6}$, Pycnonoticke, that of the Cuckoo-shrikes, Campopheteficte, and that of the Flycatchers ${ }^{7}$, Muscicapide. The thirty-ninth and last family of the first section of Passeres is formed by the Martins and Swallows ${ }^{8}$, or Hirundinide.

The second section of the suborder Passeres, the section Mesomyodi, contains twelve families, which are separable into disisions, distinguished as Oligomyoder, T'ratheophonce, Atrichice, and Menurce.

In the first the lower end of the trachea is not modified to form a vocal organ, but in the Trocheophomer it is so modified, while in them the bronchi do not contribute to form it.

The first of the twelse families, the fortieth of the suborder of Passeres, is that of the Tyrant-birds ${ }^{9}$ or Tyramider; then comes a family of but three, as yet determined species, the Sharp-bills or Oxyrhamphide, followed by the Pipricte or Manakins, which are small shy birds inhabiting South-American woods, and consisting of about serenty species. After this

${ }^{1}$ P. 102.	2	P. 106.	9 P. 108.
${ }^{4}$ P. 69.	${ }^{5}$ P. 98.	6	
${ }^{7}$ P. 115.	8	P. 117.	

follows the forty-third family-the Chatterers, Cotingite-the type of which is the Blue Chatterer, and which also contains the other interesting birds before mentioned by us ${ }^{2}$ - namely, the Cock-of-the-Rock, the Umbrella-bird, and the Bell-bird. The nest family group cousists of the Plant-cutters, Phytotomille, a small group of South-Americau birds. To these succeed the Wattled Ant-thrushes, Philcpittich, the Pittider, or Old-world Ant-thrushes, and the very small family of NewZealaud Wrens, Yencicin, with ouly five known species.

The next and forty-eighth family, that of the IDendrocoleptidnter, is the first family of the division Tracheophome. It is the family of the Wood-hewers and Oven-birds ${ }^{3}$. To this succeeds the family of American Ant-thrushes ${ }^{1}$, or Formictridide, and after that the small families, Gnat-eaters, Conopophoydede, and the Tapaculos or Pteroptochiche (that might be called "tilttails"), with which the second division of Passerine Birds terminates.

The third division of the section 11 esomyorli is formed by the Scrub-birds-the tifty-second family, Atrichïdu. The trachea and rocal organs are as in the Oliyomyorte, but the stemum is quite exceptional. The fourth and last division, the Menurr, consists only of the Lyre-birds-the family Menuride. It resembles the Oligomyoder, as does the third division, but is entirely peculiar, in the downy clothing of its young.

The divisious may be expressed in a tabular form, thus :-

${ }^{1}$ See ante, pp. 91-95.
${ }^{2}$ P. 118.
${ }^{3}$ P. 120.
${ }^{4}$ P. 110.

The suborder Eurylemi contains two families, those of the Green Broadbills, or C'alyptomenidce, and those of the Broadbills ${ }^{1}$ par excellence, the Eurylcmide.

The suborder of Itumming-birds, Trochiti, contains but a single family, Trochiticte ${ }^{2}$, and subfamily Trochitinue.

The second order, Coraciaformes, contains probably more than 523 species, including the Kingfishers, Swifts, and Hombills, with their allies, and these, again following Mr. Seebohm, we group in three suborders, namely, (1) Coracia, (2) Halcyones, and (3) Bucerotes.

The characters of these groups may be thus stated :-

Order 1I. CORACIIFORMES.

Hallux present and connected with the flearor longus digitorum, and not with the flexor longus hallucis; plantar tendons not free; no ambiens; joung born nearly maked; wingcoverts large ; anterior toes united together at the base for some distance; outer toe a little shorter than the middle one, and with three joints; inner (or second) toe either joined to the middle one for some distance, or absent; bill long and tapering; nostrils basal, above the middle of the mandible; tongue not extensile.

Suborder 1. Coracice.

Spinal feather-tract well defined on the neck, but forked on the upper back; oil-gland generally present but not tufted; palate variously formed; a semitendinosus present (except in the Swifts) ; ceca present (except in the Swifts) ; basipterygoid processes ${ }^{3}$ sometimes present ; manubrium not generally forked; sternum ${ }^{4}$ never perforated for coracoids, save in the Meropidce.

Suborder 2. Halcyones.

Spinal feather-tract well defined on the neck and not forked on the back; oil-gland always present and generally tufted;
${ }^{1}$ P. 77.
${ }^{2}$ P. 100.
${ }^{3}$ See ante, p. 184.
${ }^{4}$ See ante, p. 178.
palate desmognathous; no creca, save in Todies, where they are large ; no pterygoid processes ; episternal processes of steruum not perforated for coracoids ; accessory somitendinosus present, save in the Kingfishers.

Suborder 3. Bucerotes.

Spinal feather-tract not defined on the neck; oil-gland tufted; palate desmognathous; no cæca; basipterygoid processes; mid-frout of sternum grooved or perforated for coracoid processes ; sternum with two posterior notches ; femoro-ccuclul, somitendinosus, and accessory semitendinosus present; ambicus and accessory femoro-caulal absent; bill large, strong, and arched; wings short; female incubates enclosed in a tree.

This order contains twelve families, whereof seven belong to the first suborder and four to the second.

The families belonging to the Corucie are those of the Swifts (Cypselides); the Goatsuckers ${ }^{1}$ (Caprimulyider); that of the Oil-bird ${ }^{2}$-which is thus shown to be far indeed from the Raptorial group-the Stectornithictar; the Frog-mouths or More-porks, Podargider, and the family of the Cyrombo of Madagascar-the Leptosomide. Next comes the family which contains the type of the suborder Coracia, namely the common Roller ${ }^{3}$, and, lastly, the pretty and attractive Bee-eaters ${ }^{4}$ or Meropide.

The suborder Hutcyones contains the rery small family of Colies ${ }^{5}$, Coliudte, and the very large one of Kingfishers", Alcelinider ; also the Motmots ${ }^{7}$, Momutider, and the half-dozen Todies ${ }^{\text { }}$, Todidce.

The suborder Bucerotes consists but of a single family, Bucerotidce, containing all the Hornbills ${ }^{9}$.

The third order of Birds, the Piciformes, also consists of about 650 species in three suborders:-1. Upupe, 2. Troyones, and 3. Scansores. The following are their characters :-

P. 86.	P. 123.	${ }^{3}$ P. 96.
${ }^{4}$ P. 82.	5 P .80.	${ }^{\varepsilon}$ P. 68.
${ }^{7}$ P. 83.	- P. 81.	${ }^{9}$ P. 78.

Order III. PICIFORMES.

Toung born helpless, but pass through no dorny stage: hallux mostly present in the form of a hind toe, but sometimes the hind toe is the fourth digit ; a spinal feather-tract on a considerable part of the neck, well defined by lateral bare tracts, and not split by a spinal bare tract; hind toe, or toes, supplied by flewor lonyus hullucis; no ambiens or accessory femoro-coulcul; oil-gland always present, tufted or not tufted: feet generally zygodactyle ; rostrum of sternum generally not perforated for coracoids ; generally no basipterygoid processes ; dorsal vertebræ never opisthocolous; cervical vertebre never more than fifteen.

Suborder 1. UPирие.

Deep plantar tendons free ; steruum perforated for processes of coracoids; palate desmognathous; sternum with two deep posterior notches; oil-gland tufted; spinal feather-tract forked on the upper back; second digit not reversed; basipterygoid processes absent ; no creca.

Suborder 2. Trogones.

Each deep plantar tendon bifurcating to supply two foes; sternum not perforated for coracoids ; sternum with four posterior indentations; palate schizognathous ; spinal feathertract well defined from nape to oil-gland, but not forked: second digit reversed; basipterygoid processes present; oilgland present and nude; cæca present.

Suborder 3. Scansores.

Flewor digitorum sending a tendon to third digit onls; flewor hallucis joining just mentioned tendon, and then supplying hallux, second and fourth digits; sternum not perforated for coracoids; palate various; oil-gland nude or tufted; spinal feather-tract well defined on the neck and forked on the
lower (not on the upper) back; feet zygodactyle; basipterygoid processes absent.

There are nine families in this order: two to the first sul)order, one to the second, and six to the third.

The first is the Cpmpille, and consists of the Hoopoes ${ }^{1}$. The second is the Irriserich, which iurludes the Wrood-hoopoes. The third embraces all the Trogons ${ }^{2}$, and is named Tioyomide.

The first family of the third suborder is called ciathurlitu, and contains the Jacamars ${ }^{3}$.

The second family contains the Puff-hirds ${ }^{4}$, and is named Berconitw, while the third is the very large famile of Wondpeckers" and Wrynecks, called, from the trpe, Picidu. The remaining three families are the Indicatoritar or Honeyguides ${ }^{\text {b }}$, the Capitonide or Barbets ${ }^{7}$, and the handsome but strange Toucans, Rhamphastidre.

The fourth order, with more than $1!0$ species, is Coceryes, which may be divided into two suborders, each containing but a single family.

The first suborder is that named Musophagi, and the second is called Cucuti.

Their characters stand thus:-

Order IV. COCCTGES.

Palate desmoguathous: no basipterrgoid processes; hallux always present and supplied by fleror hallucis; second, third, and fourth digits supplied by flearor digitorum; young born helpless, but not passing through a downy stage; feet often zrgodactyle ; dorsal vertebre not opisthocolous.

Suborder 1. Musophagi.

Plantar tendons not free; spinal feather-tract both well defined on the neck and not forked on the back; vil-gland tufted; feet may be semi-zygodactyle.
${ }^{1}$ P. 86. The Hoopoes are nearly related to the Hornbills, and form a transition from them to the other Piciformes.
${ }^{2}$ P. 88.
${ }^{3}$ P. 77.
${ }^{6}$ P. 81.
${ }^{4}$ P. 76.
${ }^{5}$ P. 70.
${ }^{7}$ P. 75.

Suborder 2. Cucuti.

Plantar tendons not free; spinal feather-tract not well defined on the neck and not forked on the back; oil-gland nude; feet zygodactyle.

The family of the first suborder is Musopharficte, and contains all the Plantain-eaters ${ }^{1}$. Those of the second suborder are the C'uculide, or the family of true Cuckoos ${ }^{2}$, and the Centropider, or the large-headed Cuckoos, and the Phonicophainider, embracing the Bush-cuckoos, many of which are very beautiful. Then follow the Pheasant Cuckuos (Neomorphicle), the Softplumed Cuckoos (Diploptericter), and the Auis (Crotoplugithe).

The fifth order may be named Columbiformes, and contains the two suborders 1. Columbere and 2. Pterocletes, with more than 370 species, the characters of which are as follows:-

Order V. COLUMBIFORMES.

Maxillo-palatines not united across the middle line ; a hallux present supplied by flexor hallucis; palate schizognathous; nasals schizorhinal; basipterygoid processes present; sternum not perforated for coracoids; oil-gland nude if present.

Suborder 1. Columbce.

Toung born helpless and requiring to be fed for many days, but not passing through a downy stage : a special feather-tract on a considerable part of the neck, well defined by bare tracts and not split by a spinal bare tract; nostrils close to margin of mandible and corered with a soft cuticle, forming a large swelling ; tarsus covered with large transverse scales in front ; ceeca present or absent; mostly two notches on either side of sternum, but the imner pair are sometimes replaced by foramina and sometimes absent.

Suborder 2. Pterocletes.
Young born covered with down and able to run in a few

$$
{ }^{1} \text { P. } 79 . \quad{ }^{2} \text { P. } 85 .
$$

hours ; no lateral bare tracts on neck; two notches on each side of hinder margin of sternum ; oil-gland present; no powderdown patches ; no swollen soft cuticle covering nostrils; basipterygoids rather backwards ; cæса present.

The first suborder includes the very large family of Doves and Pigeons ${ }^{1}$ (Colembidce), and the family which contains only the tooth-billed Pigeon, and is called Didmoutidre.

The second suborder has a single small family which consists of the Sand-grouse ${ }^{2}$, and is named Pterocticle.

The sixth order, with nearly 500 species, is Psittaci, and is not divided into suborders. Its characters may be thus expressed :-

Order VI. PSITTACI.

Palate desmognathous ; maxilla exceptionally moveable : basipterygoid processes absent; hallux always present and supplied by the flexor lullucis; young born helpless and nearly naked; feet zygodactyle ; dorsal vertebre opisthocolous; spinal feathertract well defined on the neck and forked on the upper back; plantar tendous not free; oil-gland tufted or absent; tarsometatarsus rery short compared with the length of the tibia.

There are six different families belonging to this order. The first of these, Nestoride, contains the singular Kea Parrot * and all the Nestors. The second family is mamed Loriziop, and is that of the Brush-tongued Parrots and Lories. The third family, Cyclopsittacide, contains but two genera. The fourth, Cucutmeler, is that of the Cockatoos. The bulk of the order is contained in the fifth family, Psittucilio, in which are the Macaws, the true Parrot (which gives its name to the family), the Love-bird, A!fapornis, and the Rose-ringed Parrakeet (Paluornis torquatus)-the only Parrot supposed to have been known to the ancients. The last family, Stringopider, contains only the curious Owl-like Parrot ${ }^{4}$.

The seventh order, of more than 500 species, is that of the Birds of Prey, Ruptores, and consists of the suborders 1. Fulcones, 2. Serpentarii, 3. Cathartes, and 4. Striges.
${ }^{1}$ P. 13.
${ }^{2}$ P. 12.
${ }^{3}$ P. 73.
${ }^{4}$ P. 72.

The characters of these groups are as follows:-

Order VII, RAPTORES.

Beak raptorial; claws long, strong, much curved, and very sharp; young born helpless and either with down or, if naked, then soon passing through a downy stage; plantar teudons united; maxillo-palatines united in the middle line; palate neither ægithognathous nor schizognathous ; spinal feather-tract forked on upper back; sternum not perforated for coracoids; nasals not schizorhinal; dorsal vertebre not opisthocœlons; cervical rertebre not more than 18 ; mandible not produced backwards beyond the quadrate; hallux with more than one phalanx ; oil-gland present and tufted or nude ; ceca present or absent.

Suborder 1. Falcones.

Basipterygoid processes absent; spinal feather-tract well defined on the neck; oil-gland with a circlet of feathers ; tarsometatarsus not very elongated ; cumliens and femoro-ccuctel present; aceessory femoro-caulul, semitendinosus, and accessory semitemlinosus absent: basal phalanx of third digit not generally shortened ; nostrils not perforated through; dorsal vertebre heterocolous: hallux supplied by flecor lullucis; an organ of voice present.

Suborder 2. Serpentarii.

Palate desmognathous: basipterygoid processes well dereloped ; spinal feather-tract well defined on the neck; oil-crland tufted; tarsi (tarso-metatarsals) rery elongated; no fimmorcandal, but acessor"! fimoro-eculdel, semitenclinosus, and ace ssor!! semitendinosus present; basal phalanx of third digit not greatly shortened; hallux supplied by flecor hullucis; an organ of roice present; nostrils not perforated through.

Suborder 3. Cathartes.

Palate desmognathous; basipterygoid processes present and large; spinal feather-tract not defined on the neck; oil-gland present, but nude: tarsi not very elongated; femoro-cantal sometimes absent, but semitenclinosus and accessory semitcontinosus present; young soon covered with down; basal phalanx of third digit not greatly shortened; no organ of voice; nostrils perforated through; lateral toes joined to middle one by a fold of skin; hallux elerated and supplied by flewor digitorum aud not by the flewor hallucis; no cæca.

Suborder 4. Striges.

Palate desmognathous; basipterygoid processes present; spinal feather-tract well defined on the neck; oil-gland present, but nude; tarsi not elongated ; femoro-coulal present; accasory femoro-coudul, semitendinosus, accessary semitentinusus, and ambiens absent; outer toe reversible ; basal phalanx of third digit greatly shortened; hallux supplied by fledor hullucis and not by the flecor digitorem; an organ of roice present; nostrils not perforated through ; eves directed forwards.

There are seven families of Raptorial Birds, three belonging to the first suborder and two to the second.

The first family includes all the Falcons ${ }^{1}$, Eagles, IIawks, and Buzzards, and is accordingly termed Fulcomidn. The second family contains the O-prevs, and is called from them P'andiomider. The third family, Tulturidu, contains the true Vultures ${ }^{2}$.

The second suborder has but one family, termed cryporiromider, from the gencric name of the Secretary-hird ".

The third suborder contains only a single family, which is composed of the American Tultures, and is named from the Condor, Sarcorlamphida.

The fourth suborder, that of the Owls, contains two families. The first of these is Buboumen, and contains the great majomitr of the species, including the type, the Eagle-owl t The second

[^58]family of Owls is named Strigite from the generic term applied to the typical species of the whole suborder-namely, the Barnowls.

The next and eighth order, with 69 species, is that of the Stergenopodes, the characters of which may be thus expressed:-

Order VIII. STEGANOPODES.

Palate desmognathous; plumage of neck continuous ; young born helpless, passing through a downy stage; hallux supplied br flewor hatlucis ; a tufted oil-gland ; ceca present; no basipterygoid processes; mandible not produced backwards beyond the quadrate ; sternum not perforated by coracoids.

There are three families in this order. The first is the Pelectenitir, and contains all the Gannets ${ }^{1}$, Pelicans ${ }^{2}$, Cormorants, and Darters ${ }^{3}$. The second contains the Tropic-birds ${ }^{4}$, and is named Phuetontidre; while the Frigate-bird ${ }^{\text {s }}$ bestows its name on the third family of Tachypeticle.

The ninth order, the Herodiones, has about 134 species, with the following characters :-

Order IX. HERODIONES.

Spinal feather-tract either not defined or not reaching far up on the neck; flexor digitorum not supplying the hallux; young born helpless and passing through a downy stage; palate desmognathous; basipterygoid processes absent ; nasals schizorhinal or not so ; semitendinosus present; dorsal vertebræ not opisthocolous; oil-gland present and tufted.

Fire families belong to this order. The first of these, Ardeivtr, embraces the Herons and Bitterns ${ }^{\text {b }}$. The second family, Sompide, includes the Umbrette ${ }^{7}$, the Shoe-bill ${ }^{4}$, and the Boatbill ${ }^{3}$. The third family, Cicomidtr, includes the Storks ${ }^{10}$, the Adjutant ${ }^{11}$, and the Wood Stork ${ }^{12}$, but not the Crane ${ }^{13}$, which belongs to quite another order. The fourth family is called

P. 27.	2	P. 28.		P. 26.		P. 33.
P. 32.	6	P. 36 .		P. 4).		P. 39.
${ }^{3} \mathrm{P} .38$.	10	P.	11	P. 41.		P. 43.
P. 44.						

Plataleidn from the Spoonbill ${ }^{1}$: and the fifth and last, Ibiclid,", takes its denomination from the Sacred Bird of Egypt ${ }^{2}$.

The next order, Alectorides, contains at least $-4: 3$ species, and is divisible into two suborders-1. Gramerir and 2. Fulicurin. with the following characters :-

Order X. ALECTORIDES.

spinal feather-tract forked on upper neek; if a plantar tendon goes to hallux, it is from the flezor haflucis: young bom covered with down and able to rum in a few hours; palate not desmognathous; basipterygoid processes present or ahsent: nasals schizorhinal or holorhinal ; cmbiens and femoro-coutul not simultaneously absent: mandible unt produced backwarks beyond quadrate ; dorsal rertehre heteroculous: sternam not perforated for coracoids.

Suborder 1. Gruarice.

Maxillo-palatines not coalescince tomether or with romer : nasals schizorhinal; oil-gland present, nude or tufted.

Suborder 2. Fulicarie.
Palate schizognathous; nasals holorhinal; oil-gland present or absent, nude or tufted.

There are nine families in this order, whereof four helong 1 (: the first suborder.

The first family is that of the Cranes, fimem, and the second that of the I Eemipodes", whence it is called Turnicidu. The thind family, Rhinochetilu, contains the Kagu '; and the fourth, Eu'In !!yidn, consists of the suu-hittern alone, which is thus a very different bird from the true Bittern. The fifth family, Otilir, has its name from the Bustards", while the sixth, Cariamich, contains but two speries, one of which is that singular bid the Cariama'. Next follows the If ciomitheide, named from the Sonth-Americin bird before noticed ". The
${ }^{1}$ P. 51.
${ }^{2}$ P. iB.

- P. 11.
${ }^{1}$ P. 48.
iP. 3\% ~ P. 4\% * P. $46 . \quad$ P. 19.
eighth family is the Rallider, so called from the Rails ${ }^{1}$, the Weka Rail, Coots", Moor-hens, and birds of the genus Notomis", which enter into it.

The last family contains but a single genus, that of the Trumpeter ${ }^{4}$. Hence it is termed Psophiidda.

The eleventh order, Gulliformics, contains nearly 320 species in two extremely unequal suborders-namely, 1. Dysodir and 2. Gallince.

Their characters may be expressed as follows :-

Order XI. GALLIFORMES.

Young born covered with down or feathers; maxillo-palatines not united across the middle line; hallux rather or very larg and supplied from flewor hallucis; nasals holorhinal ; oil-gland generally present, tufted, save in the Megapodes: stermum either perforated to receive the coracoids or else with a quite rudimentary keel; sternum with two notches on either side of its posterior margin; basipterygoid processes almost always present and articulating with the pterygoids as near the palatines as possible.

Suborder 1. Dysoda.

Keel of sternum rudimentary: episternal processes perforated; hallux very large; oil-gland tufted; basipterygoid processes absent in the adult condition.

Suborder 2. Gallince.

Keel of sternum well developed; sternum often perforated to receive processes from coracoids; hallux moderate; oil-gland sometimes nude, sometimes absent, sometimes tufted.

There are five families in this order, of which ouly one belongs to the first suborder.

This first family, Opisthocomider, contains only the IIontzin ${ }^{5}$.
${ }^{1}$ P. 17.
${ }^{2}$ P. 18.
${ }^{3}$ P. (63.
${ }^{1}$ P. 45.
${ }^{5}$ P. 94.

The second, Phresienider, includes all the Peacocks, Pheasants ${ }^{1}$, Tragopans ${ }^{2}$, Turkeys, Fowls, and Cuinea-fowls ${ }^{3}$. The third family, Tefraomidt, takes its name from the Capercailzie, and also includes the Partridges and Quails, the Californian Quail ${ }^{4}$, and many others. The Curassows" constitute the fourth family, Crucider, whilst the last family of Meyoupodiche consists of the Mound-builders ", also called Megapodes and Brush-turkeys.

The twelfth order, Limicoliformes, of 330 species, contains the suborders 1. Limicolt and 2. Gavie, which may be characterized thus:-

Order XII. LIMICOLIFORMES.

Young horn covered with down and able to run in a few hours ; palate schizognathous; dorsal vertebre more or less opisthocœlous; spinal feather-tract forked on the upper back; nasals mostly schizorhinal, sometimes holorhinal; fontanelles often present on the lateral occipital bones; oil-gland tufted.

Suborder 1. Limicolce.
Basipterygoid processes present; dorsal vertebræ always opisthocolous.

Suborder 2. Gavice.
Basipterygoid processes absent; dorsal rertebre more or less opisthocœlous.

In this order there are four families, two to each suborder.
The first family, Churredsiidu, receives its name from the Plovers ${ }^{7}$; but it also contains the C'urlews ", the Woodcock, the Snipes and stints, the Saudpipers, the Ruffs ${ }^{3}$, Godwits and Oyster-catchers ${ }^{10}$, the Stits ${ }^{11}$ and Arocet ${ }^{12}$, the Crooked-bill Plover ${ }^{13}$, the Thick-knees ${ }^{11}$, the Peewit, the Coursers ${ }^{13}$, the Pratucole ${ }^{13}$, that very curious bird the Sheath-

${ }^{1}$ P. 5.	P. 6.	P. 7.	P. 10.
P. 8.	${ }^{6}$ P. 9.	${ }^{7}$ P. 59.	${ }^{8}$ P. 52.
P. 55.	${ }^{10}$ P. 56.	${ }_{11} \mathrm{P} .57$.	${ }^{12}$ P. 58.
P. 58.	${ }^{14} \mathrm{P}$. 6 \%.	${ }^{15}$ P. 50.	P. 61.

bill ${ }^{\text {t }}$, the Turnstones, and various other forms. The secoud family is composed of the Jacauas ${ }^{2}$, whence it is termed P (orridu. The third family includes the Terus and that singular species the skimmer . It is the family sternita. The fourth and last family, Letridte, includes the Gulls ${ }^{\text {; }}$, with the Robbergulls or Skuas.

The thirternth order, the Tulimures, with about 115 species. has the following characters :-

Order XIII. TUBINARES.

Nostrils produced extermally into tubes; young fed by the parents for some time in the nest: nasals holorhinal; dorsal rertebre heterocolons; hallux absent or reduced to one phatlanx, the other toes directed forwards; spinal feather-tract well defined ou neek ; oil-gland tuffed; masipterygoid processes present or absent.

This order contains but two families, which are named respectively from the Petrels" and the Whatrosses-the first Pro-
 by some deemed a distinct family, on aceount of its short wings and the entire absence of a hind toe.

The fonrteenth order, P!!g(q)erliformex, contains is species in two suhorders, which may be respectively termed, 1. I'yyopoeles and \because. Alco. Their characters may stand thes:-

Order XIV. PYGOṖODIFORMES.

Toung almost always born covered with down or feathers: they may or may not run about or swim in a few bours; hallux rery small or absent : palate schizoguathous; spinal feathertract forked on the upper back or not defined on the neek; fontanelles sometimes present in the lateral oceipital bones: tail small or all hut absent; thigh, tarsus, and foot short ; toes webbed or lobed; wing short; no basipterygoid processes.
${ }^{1}$ P. 61.
${ }^{6}$ P. 30.
$\begin{array}{ll}{ }_{2}^{2} \text { P. 62. } \\ { }_{5}^{5} & \text { P. } 29 .\end{array}$
${ }^{3}$ P. 30.
${ }^{6}$ P. 31.

Suborder 1. Pygopodes.

Chemial process of tibia very large ; posterior processes of ilium almost conceal sacrum dorsally; sinal feather-tracts not defined on the neck; a small hind too; ambiens present or absent : young able to run or swim in a few hours.

Suborder 2. Alcce.
Cnemial process of tibia not very large; sacrum not hidden florsally by posterior processes of ilium ; spinal feather-tract forked on the upper back: no hind toe; no anticns; a tufted oil-gland ; caca to intestine ; nasals schizorhinal ; fontanelles in lateral ocecipitals: young fed in the nest for mauy days.

The order contains five families, two for the first suborder, and three for the secoud. The first family is formed by the Divers ', whence it is termed Colymbidir, aud similarly the second family is called Porlicipidn, from the Grebes ', which compose it.

The third family Alcith consists of the Razormills ${ }^{3}$, Auks, and Puftins ${ }^{4}$. The fourth family is termed stimorlegnchide (from a genus Stimorthynchus from North America, Kamtskatka, and Japan), and the fifth and last, called C'rimhe, includes the Guillemots ${ }^{5}$; it also contains the Little Auk ${ }^{6}$.

The fifteenth Order Letmellirostres embraces three suborders:1. Plenticopteri; 2. Anseres: and 3. P'elementer, aud about 195 species.

Their characters may be thus set down :-

Order XV. LAMELLIROSTRES.

Young born covered with down and able to run in a few hours; palate desmognathous: maxillo-palatines broad, flat, and medianly united; they may be large and spongy; basipterygoid mostly represented by sessile, oval facets placed very far forwards ; toes webbed, or at least united by a fold of skin.
${ }^{1}$ P. 20.
${ }^{2}$ P. 20.
${ }^{3}$ P. 22.
${ }^{4}$ Pp. 23 \& 25.
${ }^{5}$ P. 21.
${ }^{6}$ P. 22.

Bill almost always flattened and laterally expanded, or, if not, then either without uncinate processes, or bill so bent that its distal part is almost at right angles with its proximal part.

Suborder 1. Phoonicopteri.

Basipterygoid processes absent or rudimentary; bill bent vertical almost at right angles; uasals holorhinal; uncinate processes preseut; mandible produced and recurved behind its articulation with the quadrate; maxillo-palatines large and spongy ; frontals narrow; grooves for orbital glands : a tufted oil-gland ; cæca well developed.

Suborder 2. Anseres.

Basipterygoid processes articulate with pterygoids as near palatines as possible; maxillo-palatines coalesced in the middle line, but not large and spongy ; bill flattened and laterally expanded ; uncinate processes present ; mandible extending back beyond quadrate and recurved ; sternum with oue posterior, shallow notch ; oil-gland tufted.

Suborder 3. Palamedere.

Basipterygoid processes present; bill neither laterally expanded nor vertically bent at right angles ; cervical vertebre more than 18; no uncinate processes; maxillo-palatines not large and spongy; maudible not much produced backwards but recurved; no spinal bare tract; oil-gland tufted: catca present.

There are nine families in the order, seven of which belong to the suborder "Anseres."

The first family Phenicopterider includes only the Flamingoes ${ }^{1}$; the second, Plectropteride, is named from a genus Plectropterus, which contains two species from Tropical Africa. The third family, Anscridu, includes the true Geese ${ }^{2}$. The Swans ${ }^{3}$ cou-
${ }^{2}$ P. 34.
${ }^{2}$ P. 14.
${ }^{3}$ P. 15.
stitute the family Cymmidre, while the Ducks ${ }^{1}$ form that called Anutide. The sixth family Freligutider is one of which the Harlequin Duck is a type. The family Erismaturicte is one containing only about nine species, and takes its name from a genus which ranges from Southern Europe to the West Indies, Chili, the Auckland Islands, South Africa, and Australia. The eighth family is termed Meryider, from the Goosauder ${ }^{2}$, which, with allied forms, is included within it. The minth and last family Palamerdecter takes its name (as does the suborder which contains it) from that curious Horned Screamer ${ }^{3}$ of South America, which it seems we must regard as a much modified arboreal form of Goose.

The sixteenth order, that named Impennes, is a small but very peculiar one, of but 19 species, in which the following characters are to be observed:-

Order XVI. IMPENNES.

First and second digits of the hand fused together in the adult condition ; three metatarsals, very short and separated by deep grooves their whole length; no quill-feathers in the wing ; palate schizognathous; young born helpless, and covered with down; spinal feather-tract not defined on the neck; no power of flight ; coracoids very large and strong ; scapula broad.

In this order there is but a single family, whereof the King Penguin ${ }^{\text {t }}$ is a type, and which may be therefore termed Aptenodyticla.

The seventeenth order, Crypturi, is twice as numerous as the preceding one. It has the following characters:-

Order XVII. CRYPTURI.

Keel of sternum well developed as usual, but placed on a very narrow median xiphoid process; two narrow xiphoid processes on either side of it; ilium and ischium connected by cartilage behind the acetabulum; vomer coalescing with the
P. 14.
${ }^{2}$ P. 16.
${ }^{3}$ P. 47.
${ }^{4}$ P. 24.
maxillo-palatines in frout, and with the ptervgoids and palatines hehind; feather-tracts well differentiated from the bare tracts on both the upper and mider parts; vil-gland tufted ; caeca present; basipterygoids placed very far backwards; no pygostrle.

This order again contains but a single family named Tincmide, from the Tinamons ${ }^{1}$ which compose it, and which are, their structure shows, widely different from the Coursers (with which we introduced them to the reader's notice) in spite of the superticial resemblance which exists between them. They lead us on, in fact, the the next and last Avian order-one which belongs to the secoud subclass of Birds, the subelass Ratite.

This eighteenth and last order of Birds, of about 20 species, is the Order Struthiomes, which contains the suborders 1. Ap,tertgiformes and 2 . Diomeliformes. These groups may be thus characterized:-

Subclass II. RATIT E^{2}. Order XVIII. STRUTHIONES.

Basipterygoid processes very large and placed on the nasipterygoid rat her than ou its rostrum ; oil-gland absent ; plumage of neck continuous; palatines articulating with the pterygoids and not with the sphenoidal rostrum; no power of flight.

Suborder 1. Apterygiformes.

A hallux present ; bill greatly elougated; wing a mere rudiment.

Suborder 2. Diomceiformes.

No hallux; bill not greatly elongated ; wing not a mere rudiment.

There are three families of this order. The first of these, Apher!!itu, is the only one of the first suborder and is constituted by the sereral species of Ap,terye alone. The second family, the Diomulder, contains the Emeus ' and the ('asso-

[^59]waries ${ }^{1}$. The third family consists of the American Ostriches, or Rheas ${ }^{2}$, and the true Ostrich, which, as the type, determines the name of the family to be Struthonide.

The following table expresses the groups of Birds, with the names of the genera pertaining to each family and subfamily, and a figure indicating the probable minimm number of species in each genus. These numbers are not always to be taken as expressing the total number now deseribed, but as an approximation thereto.

Class A V E S.

Subclass I. CARINAT※.

Order I. PASSERTFORMES.

Suborder I. PASSERES.

Section A. Acromyodi or Oscines.

Family I. Corvide.

1. Subfamily Corvinæ.

Trypanocorax, 2. Heterocorax, 1. Corvus, 11. Corvultur, 2. Coloous, 5. Corone, 12. Rhinocorax, 1. Gazoola, 1. Microcorax, 4. Physocorax, 1 . Gymnocorax, 1. Macrocorax, 2. Nucifraga, 4. Strepera, 7. Pica, 3. Cyanopolius, 2. Urocissa, 5. Cryptorhina, 1. Dendrocitta, 8. Crypsimhina, 2. Cissa, 3. Calocitta, 2. Platysmurus, 2. Temnurus, 1. Garrulus, 14. Perisoreus, 4. Cyanocitta, 5. Aphelocoma, 8. Cyanocorax, 16. Xanthura, 14. Uroleuca, 1. Gymnokitta, 1. Psilorhinus, 3. Struthidea, 1. Picathartes, 1. Glaucopis, 2. Heteralocha, 1. Creadion, 1. Falculia, 1.
2. Subfamily Fregilinæ.

Graculus, 1. Pyrrhocorax, 1. Corcorax, 1. Podoces, 4.

Family II. Paradiseide.

1. Subfamily Epimachinæ.

Ptilorhis, 5. Seleucides, 1. Drepanornis, 3. Epimachus, 3.
${ }^{1}$ P. 66.
: P. 65.

2. Subfamily Paradiseinæ.

Astrapia, 1. Astrarchia, 1. Paradigalla, 1. Paradisea, 5. Uranornis, 1. Paradisornis, 1. Cicinnurus, 1. Rhipidornis, 1. Diphyllodes, 2. Schlegelia, 1. Parotia, 2. Semioptera, 1. Lophorhina, 2. Phonygama, 4. Manucodia, 4. Lycocorax, 3. Xanthomelus, 2.

Family III. Ptilonorhynchide.
Ptilonorhynchus, 1. EElurodus, 6. Chlamydodera, 5. Tectonornis, 1. Amblyornis, 1. Prionidur", 1. Sericulus, 1.

Family IV. Sturnide.
Sturnus, 6. Spodiopsar, 9. Sturnornis, 1. Sturnopastor, 3. Dilophus, 1. Pastor, 1. Sturnia, 3. Temenuchus, 1. Graculipicu, 2. Acridotheres, 8.

Family V. Edlabetide.

1. Subfamily Eulabetinæ.

Basileornis, 2. Sarcops, 1. Eulabes, 4. Mino, 2. Melanopyrrhus, 2. Ampeliceps, 1. Psaroglossa, 1. Hartlaubius, 1. Pholidanges, 4. Aplonis, 17. Calornis, 10. Macruropsar, 1. Streptocitta, 2. Charitornis, 1. Lamprotornis, 4. Chalcopsar, 1. Cosmopsarus, 2. Amydrus, 4. Onycognathus, 2. Cinnamopterus, 1. Pilorhinus, 1. Galeopsar, 1. Hagiopsar, 1. Pyrrhocheira, 1. Lamprocolius, 13. Coccycolius, 1. Heteropsar, 2. Spreo, 6. Enodes, 1. Scissirostrum, 1. Fregilupus, 1.
2. Subfamily Buphaginæ.

Buphaga, 2.
Family VI. Eurycerotide. Euryceros, 1.
Family VII. Dicruridee.
Dicrurus, 6. Chibia, 9. Chatorhynchus, 1. Chaptia, 3. Buchanga, 7. Edolius, 1. Dissemuroides, 2. Dicranostreptus, 1. Bhringa, 1. Dissemurus, 1. Dissemurulus, 1.

Family VIII. Orrolide.
Oriolus, 33. Sphecotheres, 4.
Family IX. Icteride.

1. Subfamily Cassicinæ.

Clypeicterus, 1. Ocyalus, 1. Eucorystes, 1. Gymnostinops, 4. Ostinops, 8. Cassicus, 9. Amblycercus, 2. Cassiculus, 1. Cassidix, 1.
2. Subfamily Agelæinæ.

Dolichonyx, 1. Molothrus, 10. Agelaus, 14. Leistes, 2. Xanthocephalus, 1. Amblyrhamphus, 1. Pseudoleistes, 2. Nesops(tr, 1. Cureus, 1.
3. Subfamily Sturnellinæ.

Trupialis, 3. Sturnella, 1.
4. Subfamily Icterinæ.

Gymnomystax, 1. Icterus, 38.
5. Subfamily Quiscalinæ.

Lampropsar, 1. Scolecophagus, 2. Dives, 3. Quiscalus, 15. Macragetceus, 1. Hypopyrrhus, 1. Aphobus, 1.
Family X. Ploceide.

1. Subfamily Viduinæ.

Vidua, 2. Tetrenura, 1. Limura, 1. Stegamura, 1. Chera, 1. Penthetria, 5. Penthetriopsis, 3. Urobrachya, 3. Pyromelana, 15. Ploceipasser, 6. Philaterus, 4. Pyjenestes, 2. Cryptospiza, 1. Quelea, 5. Spermestes, 7. Amauresthes, 1. Ortygospiza, 2. Lagonosticta, 21. Stictospiza, 1. Amadina, 3. Staganoplerr"a, 1. Zonceginthus, 2. Emblema, 1. Zonogastris, 2. Pytelia, 7. Coccopygia, 2. Hypochara, 5. Tamopygia, 2. Stictoptera, 2. Nigrita, 7. Sporceyinthus, 4. Munia, 22. Urooloncha, 15. Aidemosyne, 3. Egintha, 1. Bathillda, 1. Poephila, 6. Erythrura, 11. Chlorura, 2. Neochmia, 1. Estrilda, 12. Granatina, 2.
2. Subfamily Ploceinæ.

Sporopipes, 2. Icteropsis, 1. Anaplectes, 4. Heterhyphantes, 7. Sycobrotus, 4. Sitagra, 6. Foudia, 2. Nelicurvius, 1. Hyphantornis, 32. Cinnamopteryx, 3. Ploceella, 1. Melanopteryx, 2. Malimbus, 7. Nesacanthis, 4. Ploceus, 4. Spermospiza, 3. Amblyospza, 4. Histurgops, 1. Dinemellia, 2. Textor, 2.
Family XI. Tanagride.

1. Subfamily Procniatinæ.

Procnias, 1 .
2, Subfamily Euphoniinæ.
Chlorophonia, 9. Euphonia, 33. Hypophaa, 1. Pyrrhuphonia, 1.
3. Subfamily Tanagrinæ.

Tanagrella, 4. Chlorochrysa, 3. Pipridea, 1. Procnopis, 3. Calliste, 61. Pseudodacnis, 1. Iridornis, 5. Delothraupis, 1. Stephanophorus, 1.

Pocilothraupis, 5. Buthraupis, 6. Compsocoma, 4. Dubusia, 1. Tanayra, 14. Spindalis, 6. Rhamphocolus, 12. Phloyothraupis, 1. Calochetes, 1. Pyranga, 16. Cyanicterus, 1. Orthogonys, 1. Chlorothroupis, 3. Phomicothraupis, 9. Lanio, 6. Tachyphonus, 11. Creurgops, 1. Malacothraupis, 1. Eucometis, 5. Trichothraupis, 1. Cypsnagra, 1. Pyrrhocoma, 1. Nemosia, 7. Thlypopsis, 8 .
4. Subfamily Lamprotinæ.

Lamprotes, 1. Sericossypha, 1.
5. Subfamily Phœnicophilinæ.

Phoenicoplihus, 2. Calyptophilus, 1.
6. Subfamily Pitylinæ.

Chlorospingus, 32. Urothraupis, 1. Microspingus, 1. Peaopetes, 1. Buarremon, 35. Nesospingus, 1. Arremon, 13. Diucopis, 1. Conothraupis, 1. Psittospiza, 2. Saltator, 19. Lamprospiza, 1. Orchesticus, 1. Oreothraupis, 1. Cissopis, 2. Schistochlamys, 2. Pitylus, 8.

Family XII. Cgerebide.

1. Subfamily Diglossinæ.

Diglossa, 16. Diglossopis, 1.
2. Subfamily Dacnidinæ.

Oreomanes, 1. Conirostrum, 8. Xenodacnis, 1. Hemidacnis, 1. Daenis, 14. Certhidea, 2.
3. Subfamily Cœrebinæ.

Chlorophanes, 2. Correba, t. Certhiola, 19.
4. Subfamily Glossiptilinæ.

Glossiptila,].
Family XIII. Drepanidide.
Drepanis, 1. Vestiaria, 1. Hemignathus, 6. Loxops, 2. Chrysomitridops, 1. Oreomyza, 1. Himatione, 9.

Family XIV. Frivgillide.

1. Subfamily Coccothraustinæ.

Geospiza, 9. Camarhynchus, 5. Cactornis, 4. Chloris, 3. Eophona, 2. Chaunoproctus, 1. Hesperiphona, 2. Coccothraustes, 2. Mycerobas, 1. Pyonorhamphus, 3. Pheucticus, 6. Hedymeles, 2. Guiraca, 6. Oryzoborus, 7. Loxigilla, 6. Neorhynchus, 2. Piezorhina, 1. Spermophila, 40. Dolospingus, 1. Catamblyrhynchus, 1. Melopyrrha, 1. Phonipara, 5. Volatima, 1. Amaurospiza, 3. Pyrrhuloxia, 1. Cardinalis, 2.
2. Subfamily Fringillinæ.

Fringilla, 5. Procarduelis, 2. Carduclis, "2 Chrysomitris, 27. Callacanthis, 1. Loximitris, 1. Acantlidops, 1. Telespiza, 1. Acantlis, 5. Montifringilla, 18. Rhodopechys, 1. Rhynchostruthus, 1. Rhodospiza, 1. Erythrospiza, 2. Petronic, 6. Passer, 26. Psendostruthus, 1. Poliosniza, 3. Alario, 1. Serinus, 19. Sycalis, 5. Pyrrhoplectes, 1. Carpodacus, 26. Pyrrhospiza, 3. Lovia, 2. Pyrrlula, 10. Pinicolu, 1. Propyrrlula, 1. Urayus, 3.
3. Subfamily Emberizinæ.

Urocynchramus, 1. Coryphospiza, 2. Embernagra, 6. C\%amcospizu, 1. Emberizoides, 1. Atlapetes, 2. Pipito, 8. Saltatricula, 1. I'aroaria, 6. Haplospiza, 2. Diuca, 3. Amphispiza, 3. Zonotrichia, 9. Nesospiza, 1. Porphynospiza, 1. Coryphospingus, 2. Hemophita, 10. Pyrgisoma, 7. Gubernatrix, 1. Xenospingus, 1. Ammodromus, 9. Poospiza, 14. Peucra, 4. Melospiza, 4. Spĩolla, 8. Fringillarice, 7. Melophus, 1. Emberiza, 34. Pyrrhulorhyncha, 3. Miliaria, 1. Passerculus, 4. Poocetes, 1. Calamospina, 1. Chondestes, 1. Spiza, 2. Pseudochloris, 7. Rhodospingus, 2. Lophospingus, 1. Tiaris, 1. Cyanospiza, G. Pluy.filus, 12. Spodiornis, 2. Pusserella, 2. Junco, 11. Schislosniza, 1. Plectrophenax, 1. Rhyncophanes, 1. Calcarius, 3. Idiopsar, 2.
Family XV. Alaudide.
Certhilauda, 2. Alcemon, 3. Heterocorys, 1. Chersophitus, 1. Rhamphocorys, 1. Otocorys, 4. Melanocorypha, 6. Tephrocorys, 2. Spizocorys, 1. Alauda, 3. Calandrella, 2. Alaudula, 2. Mirafire, 23. Spilocorydon, 1. Spizalauda, 1. Heliocorys, 1. Galerita, 4. Lulluita, 1. Calendula, 1. Ammomanes, 8. Pyrrlulauda, 4.
Family XVI. Motacillide.
Motacilla, 23. Limonidromus, 1. Anthus, 33. Xanthocorys, 1. Neocorys, 1. Oreocorys, 1. Macromyx, 4.
Family XVII. Mniotiltide.
Leисорежи, 2. Helminthotherus, 2. Helminthophila, 9. Protonotaria, 1. Iniotilta, 1. Parula, 4. Dendrœect, 36. Perissoglosse, 1. Peucedramus, 1. Siurus, 3. Oporomis, 2. Ligia, 1. Geothlypis, 13. Teretistris, 2. Granatellus, 4. Icteria, 1. Basileuterus, 32. Ergaticus, 2. Cardellina, 1. Setophaga, 15. Myiodioctes, 4.

Family XVIII. Certhidde.

1. Subfamily Certhiinæ.

Certhia, 4. Salpornis, 2. Tichodroma, 1. Climacteris, 9 .
2. Subfamily Sittinæ.

Sitta, 20. Sittella, 7. Mypositta, 1.
Family XIX. Meliphagide.

1. Subfamily Myzomelinæ.

Myzomela, 27. Acanthorhynchus, 2.
2. Subfamily Meliphaginæ.

Glycyphila, 13. Entomophila, 4. Meliphaga, 1. P'tilotis, 37. Cleptornis, 1. Pogonornis, 1. Deliornis, 4. Anthornis, 2. Prosthemadera, 1. Manorhina, 4. Acanhochara, 5. Leptornis, 3. Entomyza, 2. Philemon, 16. Melitograis, 1. Promerops, 2. Moho, 2. Melidectes, 1. Euthyrhynchus, 4. Melirhophetes, 2. Pyonopygius, 1. OEdistoma, 1. Acrulocercus, 3. Chetoptila, 1.
Family XX. Nectarinitde.
Neodrepanis, 1. Nectarinia, 5. Anthobaphes, 1. Chalcostetha, 1. Aithopypa, 19. Drepanorhynchus, 1. Cinnyris, 54. Arachothera, 11. Anthothreptes, 12.
Family XXI. Drceide.
Diceum, 47. Loxioides, 1. Psittirostra, 1. Finaroloxias, 1. Oreocharis, 1. Pardalotus, 8. Parmoptila, 1. Prionochilus, 16. Achmonorhynchus, 1. Pholidornis, 2. Lobornis, 1. Urocharis, 1. Melanocharis, 4. Pristorhamphus, 1. Rhamphocharis, 1.
Family XXII. Zosteropide.
Zosterops, 85. Melithreptus, 5. Plectrorkynchus,1.
Family XXIII. Paride.
Parus, 49. Psaltria, 1. Acredula, 12. Agithalus, 8. Xerophila, 2. Sphenostoma, 1. Certhiparus, 3. Panurus, 1.
Family XXIV. Regulide.
Regulus, 5. Leptopæcile, 1.
Fomily XXV. Lanitie.

1. Subfamily Gymnorhininæ.

Pityriasis, 1. Gymnorhina, 2. Cracticus, 7.
2. Subfamily Malaconotinæ.

Fanga, 2. Artamia, 3. Nenopirostris, 4. Pteruthius, 7. Hilarocichla, 1. Calicalicus, 1. Teleophonus, 8. Dryoscomes, 22. Laniarius, 16. Nicator, 3. Nilaus, 3. Neolestes, 1.
3. Subfamily Pachycephalinæ.

Falcunculus, 2. Oreoica, 1. Eopsaltria, 7. Pachycephala, 53. Pachycare, 1.
4. Subfamily Laniinæ.

Urolestes, 1. Laniellus, 1. Corvinella, 1. Lanius, 47. Tephrodornis, 6. Eurocephalus, 2. Pcoptera, 1. Leptopterus, 1. Rectes, 7. Psertdorectes, 2. Melenorectes, 1. Collyriocincla, 5. Pinarolestes, 11. Cuphopterus, 1. Fraseria, ㅡ.. Hemipus, 3. Bradyomis, 11. Melenornis, 1. Hypocolius, 1. Platylophus, 3. Prionops, :. Siymodus, 6. Cochou, 3. Pheornis, 1.

Family XXVI. Artamide.
Artamus, 17. Pseudochielidon, 1.
Family XXVII. Ampelidea.
Ampelis, 3. Dulus,2. Phainoptila, 1. Phainopepla, 1. Ptilogonys, 2.
Family XXVIII. Vireonide.
Vireo, 23. Neochloe, 1. IIylophilus, 17. Laletes, 1. Vireolanius, 4. Cyclorhis, 10.

Family XXIX. Sylviide.

1. Subfamily Sylviinæ.

Sylvia, 23. Phylloscopus, 25. Hypolais, 9. Acrocephalus, 15. Locustella, 8. Lusciniola, 13. Cettia, 11.
2. Subfamily Bradypterinæ.

Sphenсасиs, 6. Dromœосеrcus, 2. Stipiturus, 1. Psamathia, 1. Bebrornis, 2. Sphenura, 3. Amytis, 4. Schoonicola, 2. Phlexis, 1. Bradyptemes, 4. Euryptila, 1. Rhopophilus, 3. Laticilla, 2. Ellisia, 1. Megalurus, 8. Chetornis, 1. Calamocichla, 2. Calamonastes, 2. Origma, 1.
3. Subfamily Eremomelinæ.

Apalis, 4. Euprinodes, 5. Dryodromas, 5. Drymocichla, 1. Phyllolais, 1. Eroessa, 3. Sylviella, 5. Eremomela, 12. Camaroptera, 6. Hylia, 1. Stiphrornis, 3.
4. Subfámily Cisticolinæ.

Suya, 5. Prinia, 8. Burnesia, 9. Scotocerca, 2. Sutoria, 3. Orthotomus, 10. Phyllergates, 2. Thamnornis, 1. Spiloptila, 2. Graminicola, 1. Cisticola, 28. Chthonicola, 1. Acanthiza, 10. Sericornis, 11.

Family XXX. Turdide.

1. Subfamily Turdinæ.

Geocichla, 40. Turdus, 48. Merula, 53. Mimocichla, 3. Catharus, 12. Erithnous, 16. Monticola, 10. Sialia, 6. Ruticilla, 13. Myrmecocichla, 8. Saxicola, 32.
2. Subfamily Thamnobiinæ.

Turnagra, 2. Myiophoneus, 11. Callene, 4. Pentholeat, 3. Pinarochroa, 2. Pseudocossyphus, 1. Notodela, 2. Brachypteryx, 7. Lamprolia, 2. Trichius, 1. Cossypha, 16. Chimarthornis, 1. Thamnolea, 5. Thamnobia, 2. Alethe, 4. Copsychus, 3. Gervaisia, 2. Edonopsis, 1. Cichladusu, 3. Erythropygia, 8. Lioptila, 1. Hodysonius, 1. Cercotriches, 2. Cittocincla, 6.
3. Subfamily Myiadectinæ.

Myiadectes, 11. Cichlopsis, 2. Platycichla, 1.
Family XXXI. Cinclidew,
Cinclus, 12.
Family XXXII. Troglodytidet.
Cinnicerthia, 4. Campylorhynchus, 22. Odontorkynchus, 1. Thryophilus, 17. Thryothorus, 32. Cistothorus, 6. Troglodytes, 9. Urocichla, 1. Spekeomis, 2. Salpinctes, 2. Anorthura, 9. Elachura, 2. Catherpes, 2. Sphenocichla. 1. Uropsila, 1. Henicorhina, 3. Cyphorhinus, 8. Microcerculus, 8. Pnoepyga, 4.
Family XXXIII. Mrnide.
Cinolocerthia, 3. Rhamphocinclus, 1. Cichlherminia, 6. Melanoptila, 1. Nesocichla, 1. Oreoscoptes, 1. Galeoscoptes, 1. Mimus, 16. Harpoihynchus, 11. Mimodes, 1. Melanotis, 2. Donacobius, 2. Rhodinocichla, 2.
Family XXXIV. Accentoride.
Accentor, 13. Ephthianura, 4.
Family XXXV. Timelides.

1. Subfamily Chamæinæ.

Chamra, 1.
2. Subfamily Henicurinæ.

Henicurus, 6. Hydrocichla, 4. Microcichla, 1.
3. Subfamily Crateropodinæ.

Orthony.x, 3. Cinclosoma, 6. Eupetes, 6. Pyonoptilus, 1. Drymaoclus, 4. Hylacola, 2. Chatops, 3. Psophodes, 2. Hypergerus, 1. Babax, 1. Pterorkimus, 1. Trochalopterum, 26. Acanthoptila, 1. Ianthocincla, 4. Gampsorhynchus, 2. Argya, 14. Megalurulus, 1. Pinarornis, 1. Sibia, 2. Malacias, 6. Pomatorhimus, 25.

Xiphorhamphus, 1. Garmulax, 16. Stactocichla, 1. Grammatoptila, 1. Melanocichla, 1. Allocotops, 1. Rhinocichla, 2. Dryonastes, 11. Actinodura, 5. Neocichla, 1. Crateropus, 16. Aëthocichla, 1. Conostoma, 1. Suthora, 13. Chleuasicus, 2. Scheorhynchues, 2. Paradoxornis, 3. Cholornis, 1. Grallina, 2. Cinclorhamphus, 2. Calamanthus, 2.
4. Subfamily Timeliinæ.

Timelia, 2. Pyctorhis, 3. Dumetia, 3. Elaphrornis, 1. Pellorneum,5. Scotocichla, 1. Crossleyia, 1. Tatare, 7. Bernieria, 1. Macrosphems, 1. Mystacornis, 1. Stachyris, 7. Turdinus, 14. Ptyrticus, 1. Thringorhina, 2. Drymochera, 1. Erythrocichla, 1. Drymocataphus, 8. Ortygocichla, 1. Trichocichla, 1. Gypsophila, 1. Trichostoma, 1. Malacopterum, 6. Nanthomixis, 1. Oxylabes, 2. Kenopia, 1. Dasycrotapha, 1. Mixornis, 9. Neomixis, 1. Chlorocharis, 1. Macromus, 2. Ptilopyga, 2. Ptilocichla, 1. Malix, 1. Androphilus, 1. Anuropsis, 2. Crateroscelis, 2. Amaurocichla, 1. Corythocichla, 2. Turdinulus, 1. Rimator, 2.
5. Subfamily Liotrichinæ.

Stachyridopsis, 6. Oligura, 3. Minla, 7. Sittiparus, 1. Ixulus, 3. Staphidia, 4. Alcippe, 9. Rhopocichla, 3. Fulvetta, 3. Moupinia, 1. Dendrobiastes, 1. Yuhina, 4. Myzornis, 1. Herpomis, 1. Siva, 4. Liocichla, 1. Mesia, 2. Liothrix, 1. Cutia, 1.
Family XXXVI. Pycnonotide..*
Egithina, 3. Aethorhynchus, 2. Chloropsis, 16. Hypsipetes, 8. Ixocincla, 4. Hemixus, 7. Iole,8. Pinarocichla, 1. Poliolophus, 1. Micropus, 6. Criniger, 23. Trichophoropsis, 1. Tricholestes, 1. Alcurus, 1. Trachycomus, 1. Xenocichla, 16. Andropadus, 7. Chlorocichla, 4. Phyllostrophus,5. Ixonotus, 1. Pycnonotus, 36. Otocompsa, 5. Kelaartia, 1. Tylas, 5. Rubigula, 7. Spizixus, 3. Irena, 7.
Family XXXVII. Campophagide.
Artamides, 16. Campochera, 1. Pteropodocys, 1. Graucalus, 18. Edoliisoma, 20. Chlamydochara, 1. Lobotus, 1. Campophaga, 11. Pericrocotus, 20. Lalage, 18. Symmorphus, 2.

Family XXXVIII. Muscicapide.
Hemichelidon, 2. Microca, 4. Alseoñax, 8. Batis, 7. Diaphorophyiu, 3. Bias, 1. Artomyius, 2. Platystira, 4. Nerotonia, 1. Humblotia, 1. Muscicapa, 20. Dioptrornis, 1. Petroca, 13. Pratincola, 13. Erythromyias, 3. Poliomyias, 2. Muscicapula, 5. Smicrornis, 2. Gerygone, 7. Pseudoyerygone, 24. Chasiempis, 2. Muscylva, 1. Miro, 3. Lanioturdus, 1. Metabolus, 1. Heteromyias, 1. Monachella, 1. Pocilodryas, 11. Hyliota, 2. Xanthopygia, 4. Tarsifer, 7. Lioptihus, 2. Oreicola, 3. Stenostiva, 1. Polioptila, 9. Parisoma, 3. Aethomyias, 1. Chloropeta, 2. Hypothymis, 6. Cyanomyias, 1. Chelidorhynx, 1. Todopsis, 5. Chenorhamphus, 1. Clytomyias, 1. Malurus, 15. Erythrocercus, 2. Trochocercus, 3. Rhipidura, 52. Neomyias, 1. Kencephus, 3. Terpsiphone, 14. Elminia, 3. Philentome, 2. Rhinomyias, 2. Culicicapa, 3. Myiagra, 18. Pseudobias, 1. Meyabias, 1. Smithomis, 2. Macharorhynchus, 4. Cryptolopha, 18. Sisura, 2. Arses, 5. Piezorhynchus, 24. Heteranax, 1. Monarcha, 5. Peltops, 1. Pomarea, 2. Stoparola, 7. Siphia, 19. Digenea, 5. Niltara, 4. Cussinia, 2.
Family XXXIX. Hirundinide.

1. Subfamily Hirundininæ.

Chelidon, 6. Cotile, 6. Tachycineta, 7. Phedina, 2. Hirundo, 27. Cheramoca, 1. Progne, 7. Atticora, 7. Petrochelidon, 9.
2. Subfamily Psalidoprocninæ.

Psalidoprome, 7. Stelgidopteryx, 3.

Section B. Mesomyodi.

Division I. Oligoayode.
Family XL. Tyrannide.

1. Subfamily Tæniopterinæ.

Agriornis, 8. Myiotheretes, 3. Trenioptera, 9.
Ochthodiceta, 4. Ochthæеса, 19. Mecocerculus, 6.
Ochthornis, 1. Sayornis, 4. Fluvicole, 4. Amendinicola, 1. Alectrurus, 2. Cybernetes, 1. Sisopygis, 1. Cnipolegus, 11. Lichenops, 1. ज̈ทuscipipra, 1. Copurus, 2. Machetornis, 1 Muscisaxicola, 13. Centrites, 2. Muscigralla, 1.
2. Subfamily Platyrhynchinæ.

Platyrhynchus, 9. Todirostrum, 16. Oncostoma, , 9. Euscarthmus, 15. Ceratotriccus, 1. Pseudotricous, 1. Cœnotriccus, 1. Lophotriccus, 2. Orchilus, 3. Colopterus, 2. Hemitriceus, 1. Plylloscartes, 1. Hapalocercus, 4. Habrura, 1. Culicivora, 1. Pogonotricous, 4. Leptotriccus, 2. Stigmatur'a, 2. Serphophaga, 7. Ancretes,5.
:). Subfamily Elaineinæ.
Cyanotis, 1. Mionectes, 4. Leptopogon, 11. Capsiempis, 2. Phyllomyias, 4. Myiopatis, 2. Ormithion, 4. Tyrannulus, 3. Tyramiscus, 11. Elainea, 24. Empidagra, 2. Legatus,1. Sublegatus, 3. Myiozetetes, 7. Rhynchocyclus, 12. Conopias, 3. Pitangus, 10. Sirystes, 3. Myiodynastes, 7.
4. Subfamily Tyranninæ.

Megarhynchus, 1. Muscivora, 4. Hirundinea, 4. Cnipodectes, 2. Myiobius, 21. Pyrocephatus, 4. Empidochanes, 5. Mitrephanes, 5. Empidonav, 17. Lawrencia, 1. Contopues, 9. Blacious, 8. Myiochanes, 2. Myiarchus, 25. Empidias, 1. Empidonomus, 2. Tyranmus, 11. Milvulus, 2.
Family XLI. Oxyrhampmide.
Oxyrhamphus, 3.
Family XLII. Pipride.

1. Subfamily Piprinæ.

Piprites, 5. Chloropipo, 3. Tenopipo, 1. Ceratopipra, 2. Cirrhopipra, 2. Metopia, 1. Masius, 2. Metopothrix, 1. Pipra, 18. Neopipo, 1. Macharopterus, 4. Chiroxiphia, 5. Helicura, 1. Chiromacheris,7.
2. Subfamily Ptilochlorinæ.

Ptiluchloris, 2. Heteropelma, 9. Schiffornis, 2. Neopelma, 1. Heterocercus, 2.
Family XLIII. Cotingide.

1. Subfamily Tityrinæ.

Tityra, 5. Hadrostomus, 6. Pachyrhamphus, 14.
2. Subfamily Lipauginæ.

Chirocylla, 1. Lathria, 8. Aulia, 2. Lipaugus, 3.
3. Sulfamily Attilinæ.

Attila, 12. Casiomis, 2.
4. Subfamily Rupicolinæ.

Phonicocercus, 2. Rupicola, 3.
5. Subfamily Cotinginæ.

Phibalura, 1. Tïuca, 1. Ampelion, 4. Pipreola, 11. Cotinga, 8. Nipholena, 3. Carporectes, 2. Doliornis, 1. Heliochera, 2. Iodoplewra, 4. Calyptura, 1.
6. Subfamily Gymnoderinæ.

Hrematoderus, 1. Querula, 1. Pyroderus, 3. Cephalopterus, 3. Gymnocephalus, 1. Gymnoderus, 1. Chasmorhynchus, 4 .
Family XLIV. Phytoromide.
Phytotoma, 4.
Family XLV. Philepittide.
Philepitta, 2.
Family XLVI. Pittide.
Anthocincla, 1. Pitta, 43. Eucichla, 5. Coracopitta, 1.
Family XLVII. Nenicide. Acanthidosittu, 3. Xenious, 2.

Division II. Tracheophone.
Family NLVIII. Dendrocolaptide.

1. Subfamily Furnariinæ.

Geobates, 1. Geositta, 8. Furnarius, 11.
Upucerthic, 8. Cinclodes, 6. Henicornis, 2.
Clibanornis, 1. Lochmias, 2.
2. Subfamily Synallaxinæ.

Oxynrus, 2. Sylvior thorhynchus, 1. Schizocaca, 4.
Phlocicryptes, 2. Leptasthenura, 4. Synallaxis, 38. Siptorms, 29. Xenerpestes, 1.
3. Subfamily Philydorinæ.

Coryphistera, 1. Amumbius, 1. Limnophyes, 1. Limnornis, 1. P'seudocolaptes, 2. Berlepschia, 1. Phacelodomus, 6. Thripophaga, 5. Homorus, 3. Automolus, 17. Philydor, 13. Thripadectes, 3. Ancistrops, 1. Heliobletus, 1. Anabazenops, 8. Xenops, 2. Anabatoides, 1.
4. Subfamily Sclerurinæ.

Sclerurus, 6.
5. Subfamily Dendrocolaptinæ.

Sittosomus, 3. Maryaromis, 6. Glyphorhynchus,

1. Pygarrhious, 1. Dendrornis, 16. Dendroplex, 2. Dendrexetastes, 2. IHylevetastes, 1. Niphocolaptes, 4. Picolaptes, 17. Nasica, 1. Drymornis, 1. Xiphorhynchus, 5. Dendrocincla, 10. Dendrocolantes 9.

Family XLIX. Formicaride.

1. Subfamily Thamnophilinæ.

Cymbilanius, 1. Batara, 1. Thamnophitus, 55. Biatus, 1. Thamistes, 2. Pyyoptila, 2. Nectantes, 1. Clytoctantes, 1. Dysithammus, 14. Thamnomanes, 2.
2. Subfamily Formicariinæ.

Myrmotherula, 24. Herpsilochmus, 8. Formicivora, 15. Teremura, 4. Psilorhamphus, 1. Rhamphocemus, 6. Cercomacra, 10. Pyriglena, 4. Gymnocichla, 2. Percnostola, 3. Heterocnemis, 4. Myrmeciza, 12. Hypocnemis, 17. Pithys, 4. Gymnopithys, 3. Rhopoterpe, 1. Phloyopsis, 5. Formicarius, 7.
3. Subfanily Grallariinæ.

Chamaza, 5. 'Pittasoma, 2. Thamnocharis, 1. Grallaria, 31. Grallaricula, อั.

Family L. Conopopmagide.
Conopophaga, 9. Corythopis, 2.
Family LI. Pteroptochide.
Scytalopus, 9. Merulaxis, 1. Liosceles, 3. Pteroptochus, 2. Rhinocrypta, 2. Hylactes, 2. Acroptermes, 1. Triptorhinus, 8*.

Division III. Atrichie.
Family LiI. Atrichide.
Atrichua, 2.
Division IV. Menurae.
Family LiII, Menurids.
Menura, 3.

Suborder II. EURYLEMI.
Family I. Calyptonenide.
C'alyptomena, 3.
Family II. Eurylemide.
Psarisomus, 1. Serilophus, 2. Sarcophanops, 1. Eurylamus, 2. Corydon, 1. Cymborhynchus, 2.
i* There is a genus Zoldomin, which I an unable to lucate at tresent, its aflinities as yet being quite undetermined.

Suborder 1II. TROCHILI.

Family I. Trochilide.

1. Subfamily Trochilinæ.

Group 1. Trochili serrirostres *.
Heliothrix, 3. Schistes, 2. Augastes, 2. Rhamphodon, 1. Androdon, 1. Hemistephania, 4. Glaucis, 2. Chlorostilbon, 13. Sporadinus, 3. . Iache, 5. Phrooptila, 1. Aithurus, 1. Microchera, 2. Callipharus, 1. Panychlora, 7. Eupherusa, 3. Elvira, 2. Thalurania, 14. Hypuroptila, 5. Lampornis, 10. Pinarolema, 1. Avocettula, 1. Eulampis, 2. Petasophora, 7. Chrysolampis, 1.
Group 2. Trochili intermedii.
Pterophanes, 1. Heliomaster, 1. Lepidolarynx, 1. Diphlogena, 3. Helianthea, 7. Bourcieria, 5. Eudosia, 1. Lampropygia, 7. Cyanolesbia, 4. Zodalia, 2. Sappho, 3. Neolesbia, 1. Lesbia, 4. Metallura, 9. Eustephamus, 3. Panterpe, 1. Heliangelus, 7. Heliotrypha, 5. Urosticte, 3. Adelomyia, 4. Anthocephala, 1. Phlogophilus, 1. Polytmus, 3. Doleromyia, 1. Leucochloris, 1. Agyrtria, 22. Ariana, 1. Cyanomyia, 8. Leucippus, 4. Amazilia, 30. Floricola, 4. Cyanophaia, 3. Damophila, 2. Polyerata, 2. Eucephala, 10. Hylocharis, 3. Chrysuronia, 5. Basilinna,2.
Group 3. Trochili lævirostres.
Eutoxeres, 4. Threnetes, 5. Phaethornis, 16. Pygmornis, 8. Sphenoproctus, 2. Campylopterus, 8. Eupetomena, 2. Aphantochron, 3. Pheochroa, 2. Sternoclyta, 1. Urochroa, 1. Eugenes, 2. Coligena, 1. Oreopyra, 4. Delattria, 4. Clytolema, 2. Lamprolema, 1. Docimastes, 1. Eugenia, 1. Heliodoxa, 4. Iolcma, 3. Lampraster, 1. Phreolama, 3. Hylo-- mympha, 1. Lafresnaya, 2. Florisuga, 2. Topaza,2. Oreotrochilus, 6. Oreomympha, 1. Oxypogon, 3.

* I am indehted to the great kindness of Mr. Osbert Salvin, F.R.S., and of Dr. Günther, F.R.S., for the use of Mr. Salvin's Manuseript Catalngue, from which the above names of generil and their division into three groups are taken. These groups are not considered by their author to have the rank of subfamilies, the differences between any of the Trochiti not being sufficient. for such a subdivision, though the multitudinons genem may be convenient? grouped as Mr. Salrin has suggested, and as is here expressed.

Rhamphomicron, 8. Upisthoprora, 1. Patagona, 1. Aglcenctis, 4. Bellona, 3. Loddigesia, 1. C'ephalolepis, 2. Abeillia, 1. Klais, 1. Eriocnemis, 21. Panoplites, 3. Spathura, 5. Rhodopis, 2. Doricha, 5. Tilmatura, 1. Calliphlox, 2. Smaragdochrysis, 1. Plochoptera, 1. Calothorax, 2. Selasphorus, 8. Trochilus, 2. Calypte, 3. Acestrura, 4. Mellisuga, 1. Catharma, 1. Atthis, 2. Stellula, 1. Chatocercus, 4. Myrtis, 2. Thaumastura, 1. Lophomis, 11. Prymnacantha, 4. Discura, 1. Heliactin, 1.

Order II. CORACIIFORMES.

Suborder I. CORACL E.
Family I. Cypselide.

1. Subfamily Cypselinæ. Cypselus, 34. Panyptila, 3.
2. Subfamily Chæturinæ.

C'hatura, 32. Cypseloides, 4. Collocalia, 7. Rhaphidura, 1.
3. Sulfamily Macropteryginæ.

Macropteryx, 5.
Family II. Caprinulgide.
Caprimulyus, 72. Eleothreptus, 1. Nyctidromus, 2. Scotornis, 2. Macrodipteryx, 3.
Family III. Steatornithide.
Steatornis, 1.
Family IV. Podargide.
Podargus, 3. Chordeiles, 13. Eurostopodus, 7.
Family V. Leptosonide.
Leptosoma, 3.
Family VI. Coracide.

1. Subfamily Brachypteraciinæ.

Brachypteracias, 1. Geobiastes, 1. Atelorns, 2.
2. Subfamily Coraciinæ.

Coracias, 11. Eurystomus, 9.
Family VII. Meropide.
Nyctionns, 2. Meropogon, 1. Merops, 17. Dicrocercus, 2. Melittophagus, 13.

Suborder II. HALCYONES.
Family I. Colinde.
Colius, 9.
Family II. Alcedinide.

1. Subfamily Alcedininæ.

Alcedo, 10. Corythornis, 3. Alryone, 5. Ceryle, 17 Pelargopsis, 11.
2. Subfamily Daceloninæ.

Ceyx, 18. Ceycopsis, 1. Myioceyx, 2. Ispidina, 4. Syma, 2. Halcyon, 53. Dacelo, 4. Sauromarptis, 3. Todirhamplus, 4. Monachaicyon, 2. Carcineutes, 2. Tanysiptera, 20. Cittura, 2. Melidora, 2. Clytoceyx 1.
Family III. Momotide.
Momotus, 11. Urospatha, 1. Baryphthengus, 1. Hylomanes, 2. Prionirhynchus, 2. Eumomota, 1. Aspatha, 1.
Family IV. Todide.
Todus, 9.
Suborder III. BUCEROTES.
Family I. Bucerotide.
Bucorax, 2. Buceros, 2. Dichoceros, 1. IFydrocorax, 3. Anthracoceros, 5. Gymnolemus, 1. Penelopides, 7. Cranorrhinus, 4. Aceros, 1. Rhytidoceros, 4. Ceratoyymna, 2. Anowhinus, 1. Philolamus, i. Ocyceros, 3. Lophoceros, 17. Bycanistes, 9. Berenicornis, 1. Ortholophus, 2. Rhinoplax, 1.

Order III. PICIFORMES.

Suborder I. UPUP 玉.
Family I. Upupide.
Upupa 5.
Family II. Irrisoridet.
Irrisor, 4. Scoptelus, 2. Rhinopomastus, 3.
Suborder II, TROGONES.
Family I. Trogonide.
Iharomacrus, 4. Euptilotis, 1. Tmetotrogon, 1. Prionotelus, 1. Trogon, 24. Hapaloderma, 3. Harpactes, 9. Mapalarpactes, 2.

Suborder III. SCANSORES.

Family I. Galbulide.

1. Subfamily Galbulinæ.

Urogalba, 2. Galbula, 10. Brachygalba, 6. Jacamaralcyon, 1. Galbalcyrhynchus, 1.
2. Subfamily Jacameropinæ.

Jacamerops, 1.

Family II. Bucconidet.

Bucco, 20. Malacoptila, 7. Micromonacha, 1. Nonmula, 5. Hapaloptila, 1. Monacha, 7. Cheliloptera, 2.

Family III. Picide.

1. Subfamily Picinæ.

Geocolaptes, 1. Colaptes, 13. Hypoxanthus, 2. Gecinus, 17. Chloronerpes, 17. Campothera, 13. Chrysoptilus, 8. Chrysophlegma, 8. Gauropicoides, 1. Gecinulus, 2. Asyndesmus, 1. Melanerpes, 29. Sphyropicus, 3. Hypopicus, 2. Dendrocopus, 31. Picoides, 5. Xenopicus, 1. Dendrocoptes, 1. Liopicus, 1. Dendropicus, 9. Thripias, 2. Iynyipicus, 19. Dendrobates, 25. Mesopicus, 7. Tiphidiopicus, 1. Sapheopipo, 1. Lepocestes, 2. Miglyptes, 5. Micropternus, 5. Brachypternus, 3. Tiga, 3. Nesoceleus, 1. Celeus, 14. Cerchneipicus, 3. Crocomorphus, 2. Chrysocolaptes, 10. Campophilus, 14. Ipocrantor, 1. Hemicercus, 3. Microstictus, 4. Hemilophus, 1. Thriponax', 9. Ceophlous, 5. Dryotomus, 2. Picus, 1.
2. Subfamily Picumninæ.

Picumnus,33. Nesoctites, 1. Verreauxia, 1. Sasia, 3.
3. Subfamily Iynginæ.

Iynx, 4.
Family IV. Indicatoride.
Indicator, 9. Prodotiscus, 2.
Family V. Capitonide.
Pogonorhynchus, 1. Erythrobucco, 1. Melanobucco, 13. Tricholema, 7. Gymnobucco, 2. Heliobucco, 1. Smilorhis, 2. Barbatula, 14. Stactolrema, 3. Calorhamphus, 2. Megalama, 2. Chotorhea, 4. Cyanops, 20. Mesobucco, 2. Xantholama, 6. Psilopogon, 1. Trachyphonus, 10. Capito, 15. Tetragonops, 2.
Family VI. Rhampuastide.
Rhamphastos, 14. Andigena, 6. Pteroglossus, 18. Selenidera, 7. Aulacorhamphus, 14.

Order IV. COCCYGES.

Suborder I. MUSOPHAGI.

Family I. Musophagide.
Tuiacus, 14. Musophaga, 2. Gallirex, 2. Corytheola, 1. Schizorhis, 4. Gymnoschizorhis, 2.

Suborder II. CUCULI.
Family I. Cuculide.
Coccysies, 6. Pachycoccyx, 2. Calliechthrus, 1. Surniculus, 3. Hierococcyx, 6. Cuculus, 10. Cercococcyx, 1. Cacomantis, 10. Misocalius, 1. Chrysoсоссуx. 4. Chalсососсух, 13. Coccyzus, 8. Urodynamis, 1. Eudynamis, 6. Microdynamis, 1. Rhamphomantis, 1. Scythrops, 1.
Family II. Centropodide.
Centropus, 33.
Family III. Prgenicophainida.
Saurothera, 5. Hyetornis, 1. Piaya, 3. Zanclostomus, 1. Taccocus, 1. Rhopodytes, 6. Rhinortha, 1. Phœ๐тiсорhaës, 1. Rhamphoсоссуx, 1. Rhinoсоссуx, 1. Urococcyx, 2. Dryococcyx, 1. Ceuthmochares, 3. Dasylophus, 1. Lepidogrammus, 1. Coua, 12.
Family IV. Neonorphide.
Carpococcyx, 1. Neomorphus, 5. Geococcyx, 2. Morocoсеух, 1.
Family V. Diplopteride.
Diplopterus, 1. Dromococcyх, 2.
Family VI. Crotophagide.
Crotophaga, 3. Giuira, 1.

Order V. COLUMBIFORMES.

Suborder I. COLUMBA.
Family I. Columbide.

1. Subfamily Treroninæ.

Treron, 37. Ptilonopus, 51.
2. Subfamily Columbinæ.

Carpophaga, 63. Lopholaimus, 1. Columba, 51. Ectopistes, 4. Ena, 1. Geopelia, 6. Macropygia, 19. Turtur, 25.
3. Subfamily Gourinæ.

Chamapelia, 8. Columbula, 6. Zenaida, 14. Peristera, 48. Starnoenas, 1. Ocyphaps, 1. Petrophassa, 1. Chalcophaps, 10. Trugon, 1. Hericophaps, 1. Phaps, 3. Goura, 3.

Family II. Didenculide.
Didunculus, 1. Geophaps, 1.
Suborder II. PTEROCLETES.
Family I. Pteroclide.
Pterocles, 14. Syrrhaptes, 2.

Order VI. PSI'TTACI.

Family I. Nestoride.
Nestor, 5.
Family II. Lorides.
Chalcopsittacus, 7. Eos, 12. Lorius, 10. Calliptilus, 1. Vini, 2. Coriphitus, 2. Trichoglossus, 12. Psitteuteles, 4. Ptilosclera, 1. Glossopsittacus, 5. Hypocharmosyna, 9. Charmosynopsis, 2. Charmosyna, 3. Oreopsittacus, 1.
Family III. Cyclopsittacide.
Neopsittacus, 3. Cyclopsittacus, 15.
Fomily IV. Cacatuide.

1. Subfamily Cacatuinæ.

Microglossus, 1. Calyptorhynchus, 7. Callocephalon, 1. Cacatua, 15. Licmetis, 2.
2. Subfamily Calopsittacinæ.

Calopsittacus, 1.
Family V. Psittacide.

1. Subfamily Nasiterninæ.

Nasiterna, 10.
2. Subfamily Conurinæ.

Anodorhynchus, 3. Cyanopsittacus, 1. Ara, 15. Rhynchopsittacus, 1. Conurus, 28. Comuropsis, 1. Cyanolyseus, 2. Gnathosittaca, 1. Henicognuthus, 1. Microsittace, 1. Pyrrhura, 19. Myopsittacus, 2. Bolborhynchus, 7. Psittacula, 9. Brotogerys, 11.
3. Subfamily Pioninæ.

Chrysotis, 42. Pachymus, 1. Pionus, 10. Deroptyus, 1. Triclaria, 1. Pionopsittacus, 9. Gypopsittacus, 1. Urochromic, 8. Caica, 4. Poocephalus, 14.
4. Subfamily Psittacinæ.

Psittacus, 2. Corucopsis, 5. Dasyptilus, 1.
5. Subfamily Palæornithinæ.

Eclectus, 6. Geoffroyus, 15. Prioniturus, 7. Tanygnathus, 8. Palcornis, 23. Polytelis, 3. Ptistes, 3. Aprosmictus, 8. Pyrrhulopsis, 5. Psittacella, 3. Psittinus, 1. Bolbopsittacus, 3. Agapornis, 7. Loriculus, 20.

6. Subfamily Platycercinæ.

Platycercus, 13. Porphyrocephalus, 1. Barnardius, 3. Psephotus, 6. Neophema, 7. Cyanorhamphus, 14. Nymphicus, 2. Nanodes, 1. Melopsittacus, 1. Pezoporus, 1. Geopsittacus, 1.
Family VI. Strivgopide.
Stringops, 2.

Order VII. RAPTORES.

Suborder I. FALCONES.
Family I. Falconide.

1. Subfamily Falconinæ.

Falco, 25. Hierofalco, 6. Hieracidea, 2. Cerchneis, 22. Baza, 10. Harpagus, 3. Ictinia, 2. Micruhierax, 4. Poliohierax, 2. Spiziapteryx, 1. Harpa, 1.
2. Subfamily Aquilinæ.

Gypaetus, 2. Uroatus, 1. Aquila, 9. Nisaetus, 4. Lophotriorchis, 2. Neopus, 1. Spiziastur, 1. Spizaetus, 14. Lophoactus, 1. Asturimula, 1. Herpetotheres, 1. Dryotriorchis, 1. Circuetus, 5. Spilornis, 6. Butastur, 4. Helotarsus, 2. Hatiaetus,7. Polionetus, 2. Gypohierax, 1. Haliastur, 2. Elanoides, 1. Nauclerus, 1. Milous, 7. Lophoictinia, 1. Rostrhamus, 3. Leptodon, 4. Gypoietinia, 1. Elamus, 5. Gampsonyx, 1. Henisapernis, 1. Macherhamphus, 2. Pernis, 3.
3. Subfamily Accipitrinæ.

Polyboroides, 2. Circus, 15. Micrastur, 7. Geranosyizias, 2. Urotriorchis, 1. Erythrocnema, 1. Melierax, 6. Astur, 30. Nisoides, 1. Accipiter, 23.
4. Subfamily Buteoninæ.

Urospizias, 1. Heterospizias, 1. Tachytriorchis, 2. Buteo, 18. Archibuteo, 4. Buteola, 1. Asturina, 7. Busarellus, 1. Butcogallus, 1. Urubitinga, 12. Harpyhaliaetus, 1. Morphnus, 1. Thrasaetus, 1.
5. Subfamily Polyborinæ.

Polyborus, 2. Ibycter, 8.
Family II. Pandionide.
Pandion, 1.
Family III. Vulturide.
Vultur, 1. Gyps, 6. Pseudoyyps, 2. Otogyps, 2. Lophogyps, 1. Neophron, 4.
Suborder II. SERPENTARII.Family I. Gypogeranidee.Gypogeranus, 1.
Suhorder III, CATHARTES.Family I. Sarcorbamphide.Sarcorkamphus, 2. Cathartes, 1. Catharistes, 1.Rhinogryphus, 5.
Suborder IV. STRIGES.
Family I. Bubonide.

1. Subfamily Buboninæ.Ketupa, 3. Scotopelia, 3. Bubo, 17. Scops, 25.Nyctea, 1. Surnia, 1. Carina, 3. Heteroglaux, 1.Speotyto, 2. Gymnasio, 2. Ninox, 25. Sceloglaux, 1.Glaucidium, 20. Microthene, 1.
2. Subfamily Syrniinæ.Asio, 9. Syrnium, 29. Nyctala, 2.
Family II. Strigide.Strix, 5. Phodilus, 1.
Order VIII. STEGANOPODES.
Family I. Pelecanide.
3. Subfamily Pelecaninæ.
Pelecanus, 10. Sula, 9
4. Subfamily Phalacrocoracinæ.Phalacrocorax, 39. Plotus, 4 .
Family II. Peaftontide.Phaeton, 4.
Family III. Tachypetide.Tachypetes, 2.
Order IX. HERODIONES.
Family I. Ardeide.1. Subfamily Ardeinæ.Ardea, 62.
5. Subfamily Botaurinæ.
Botaurus, 6. Tigrisoma, 4. Nyctiardea, 10.
Family II. Scopide.
6. Subfamily Scopinæ.
Scopus, 1.
7. Subfamily Cancrominæ.

Cancroma, 1.
3. Subfamily Balænicipitinæ.

Buleniceps, 1.
Family III. Ciconidde.

1. Subfamily Ciconiinæ.

Ciconia, 6. Mycteria, 4. Leptoptilus, 3. Tantalus,5.
2. Subfamily Anastomatinæ.

Anastomus, 2.
Family IV. Plataleide. Platalea, 5.
Family V. Ibidide. Ibis, 24.

Order X. ALECTORIDES.

Suborder I. GRUARI $\underset{\text {. }}{ }$
Family I. Gruide.
Balearica, 2. Girus, 15.
Family II. Turnicide.
Turnix, 23. Ortyxelos, 1. Pedionomus, 1.
Family III. Rhinochetidee.
1Rhinochetus, 1. Mesites, 1.
Family IV. Eurypygide.
Eurypyga, 1.
Suborder II. FULICARIE.
Family I. Otide.
Otis, 2. Eupodotis, 24.
Family II. Cardamide.
Cariama, 1. C'hunga, 1.
Family III. Helionnithide.
Heliornis, 1. Podica, 4.
Family IV. Rallide.

1. Subfamily Rallinæ.

Ocydromus, 6. Rallus, 27. Rallina, 16. Aramus, 18. Aramides,26. Crex,25. Porwamula, 1. Himathornis, 1.
2. Subfamily Gallinulinæ.

Porphyrio, 15. Notornis, 1. Tribonyx, 3. Gallimula, 16. Pareudiastes, 29. Habroptila, 1. Fulica, 12.
Family V. Psophide.e.
Psophia, 6.

Order XI. GALLIFORMES.

Suborder I. DYSODA.
Family I. Opisthoconide. Opisthocomus, 1.

Suborder II. GALLIN E.
Family I. Phastanide.

1. Subfamily Pavoninæ.

Pavo, 2. Polyplectron, 5. Argus, 4. Crossoptilon, 1.
2. Subfamily Lophophorinæ.

Lophophorus, 3. Tetraophasis, 1. Tiragopan, 5. Pucrasia, 4.
3. Subfamily Meleagrinæ.

Meleagris, 3.
4. Subfamily Phasianinæ.

Phasianus, 13. Thaumalea, 2.
5. Subfamily Euplocaminæ.

Eiplocamus, 12. Ithaginis, 2.
6. Subfamily Gallinæ.

Gallus, 4.
7. Subfamily Numidinæ.

Phusidus, 1. Agelastes, 1. Acryllium, 1. Numida, 9.
Family II. Tetraonide.

1. Subfamily Perdicinæ.

Galloperdix, 1. Hepburnia, 2. Francolinus, 36. Perdix, 15. Coturnir, 20.
2. Subfamily Rollulinæ.

Rollulus, 3.
3. Subfamily Odontophorinæ.

Odontophorus, 17. Dendrortyx, 3. Cyrtonyx, 3. Eupsychortyx, 5. Ortyx, 13. Callipepla, 5. Lophortyx, 2 .
4. Subfamily Caccabininæ.

Lerva, 1. Caccubis, 8. Tetraogallus, 5.
5. Subfamily Tetraoninæ.

Tetrao, 12. Bonasa, 4. Lagopus, 6.
Family III. Cracide.

1. Subfamily Cracinæ.

Crax, 8. Nothocrax, 1. Pauri, 1. Mitua, 2.
2. Subfamily Penelopinæ.

Steganolama, 1. Penelope, 13. Penelopina, 1. Pipile, 3. Aburria, 1. Chamapetes, 2. Ortalida, 18.
3. Subfamily Oreophasinæ.

Oreophasis, 1.
Family IV. Megapodide.
Megacephalon, 1. Leipoa, 1. Talegallus, 7. Megapodius, 19.

Order XII. LTMICOLIFORMES.

Suborder I. LIMICOL E.
Family I. Charadridea.
Edicnemus, 9. Charadrius, 29. Egialitis, 11. Anarhynchus, 1. Vanellus, 13. Lobivanellus, 13. Cursorius, 10. Glareola, 10. Dromas, 1. Chionis, 2. Attagis, 4. Thinocorus, 4. Himantopus, 8. Recurvirostra, 3. Hecmatopus, 7. Ibidorhynchus, 1. Numenuius, 12. Phalaropus, 3. Totanus, 17. Limosa, 4. Ereunetes, 4. Strepsilas, 3. Machetes, 1. Tringa, 14. Eurynorhynchus, 1. Phegornis,3. Rhynchea, 3. Scolopax, 4. Gallinago, 16.
Family II. Parride.
Parra, 10. Hydrophasianus, 1.
Suborder II. GAVIE.
Family I. Sternide.

1. Subfamily Sterninæ.

Hydrochelidon, 3. Sterna, 38. Nenia, 1. Gygis, 2. Anous, 6.
2. Subfamily Rhynchopinæ.

Rlunchops, 3.
Family II. Laride.

1. Subfamily Larinæ.

Pagophila, 1. Rissa, 2. Larus, 43. Xema, 2.
2. Sulfamily Stercorariinæ.

Stercorarius, 6.

Order XIII. TUBINARES.

Family I. Procellaritde.
Puffinus, 23. Procellaria, 21. Fulmarus, 33. Estrelata, 18. Prion, 7. Pelecanoides, 3.
Family II. Dionedeide.
Diomedea, 10 .

Order XIV. PYGOPODIFORMES.

Suborder I. PYGOPODES.
Family I. Colymbide.
Colymbus, 4.
Family II. Podicipidz. Podiceps, 31. Podilymbus, 3.
Suborder II. ALCE.
Family I. Alcider.
Alca, 2. Fratercula, 8.
Family II. Simorhynchide.
Cerorlinca, 2. Simorlynchus, 9.
Family III. Uriade.
Brachyrhamphus, 7. Uria, 8. Alle, 1.

Order XV. LAMELLIROSTRES.

Suborder I. PILCNICOPTERI.
Family I. Pheenicopteride.
Phocnicopterus, 8.
Suborder II. ANSERES.
Family I. Plectropterides.
Anseranas, 1. I'lectropterus, 2. Sarkidiomis, 2. Chenalopex, 3.
Family II. Avseride.
Cereopsis, 1. Anser, 14. Branta, 18. Nettapus, 4.
Family III. Cygnide.
Cygmus, 11.
Family IV. Anatide.
Dendrocygna, 10. Tadorna, 3. Casarca, 5. Aix, 2. Mareca, 4. Dafila, 6. Anas, 18. Querquedula, 18. Chaulelasmus, 2. Spatula, 5. Malacorlynchus, 1. Cairina, 1.
Family V. Fuligulidie.
Fuligula, 1. Fulix, 5. Aythya, 7. Bucephala, 5. Hareldn, 1. Hymenolaimus, 1. Camptolaimus, 2. Stelleria, 1. Somateria, 4. Didemia, 6.
Family VI. Erismaturide.
Biziura, 1. Thalassornis, 1. Erismatura, 6. Nesonetta, 1.

Family VII. Mergide.
Merganetta, 3. Mergus, 6. Mergellus, 1.
Suborder III. PALANEDEA.
Family I. Palamedeide.
Palamedea, 1. Chauna, 2.

Order XVI. IMPENNES.

Family I. Aptenodytide.
Spheniscus, 1. Eudyptes, 16. Aptenodytes, 2.

Order XVII. CRYPTURI.

Family I. Tinamides.

1. Subfamily Tinaminæ.

Tinamus, 7. Nothocercus, 3. Crypturus, 16. Rhynchotus, 2. Nothoprocta, 4. Nothura, 4. Taoniscus, 1.
2. Subfamily Tinamotinæ.

Calodromas, 1. Tinamotis, 1.
Subclass II. R A TIT正.
Order XVIII. STRUTHIONES.
Suborder I. APTERYGIFORMES.
Family I. Apterygide.
Apteryx, 4.
Suborder II. DROMEIFORMES.
Family I. Dromeide. Casuarius, 9. Dromcus, 2.
Family II. Struthonide.
Struthio, 1. Rhea, 2. Pterocnemis, 1

ALPHABETICAL INDEX.

Abeillia, 295.
Abnormal feathers of foot, 163.
Aburria, 303.
Acanthidops, 285.
Acanthidositta, 292.
Acanthis, 285.
Acanthiza, 287.
Acanthochera, 286.
Acanthoptila, 288.
Acanthorhyachus, 286.
Accentor, 288.
Accentoride, 262, 288.
Accentors, 262.
Accipiter, 300.

- nisus, 123.

Accipitrince, 300.
Accipitrine birds, 131.
Accros, 296.
Accstrura, 295.
Acmonorhynchus, 286.
Acredula, 286.
Acridotheres, 282.
Acrocephalus, 287.
Acromyodi, 281.
Acromyoidal structure, 214.

Acropternis, 293.
Acrulocercus, 286.
Acryllium, 303.
Actinodura, 289.
Adelomyia, 291.
Adjutant, 40, 41, 272.

Edonopsis, 288.
Egialitis, 304.
Egintha, 283.
EEgithalus, 286.
Agithina, 289.
Egithognathous structure, 186.
Aelurcedus, 282.
Epyornis, 238.

- maximas, 64.

Athocichla, 289.
Athomyias, 290.
AEthopyga, 286.
Ethorkynchus, 299.
Agapornis, 269, 299.
Ayclaine, 283.
Ageleus, 283.
Agelastes, 303.
Aglaactis, 295.
Agriornis, 290.
Agyrtria, 294.
Aidemosyne, 283.
Air-sacs, 215.
Aithurus, 294. Aix, 305.
Alcmon, 285.
Alario, 285.
Alauda, 285.
——arvensis, 109.
Alaudidce, 262, 285.
Alaudula, 285.
Albatrosses, 32, 276.
Alca, 305.
 -3:

- torda, 22.

Alcre, $-77,305$.
Alcedinicta, 205, 296.
Alcectinines, 296 .
Alcedo, 296.
-..-ispida, 68, 69.
Alcilee, 277, 305.
Alcippe, 289.
Alcurus, 289.
Alcyone, 296.
Alecthomis, 237.
Alcetorides, 273, 302.
Alectruerus, 290.
Alethe, '2SS.
Alimentary system, 206.

Allantois, 205 .
Alle, 305.

- nigricans, 22.

Alleghanian Province,
Birds of, 245.
Allocotops, 289.
Alsconax, 290.
Alula, 154.
Amadina, 283.
Amauresthes, 283.
Amaurocichla, 289.
Amaurospiza, 284
Amazilia, 294.
Amazonian subregion, Birds of, 247.

Amblycercus, 282.
Amblyornis, 282.
Amblyospiza, 283.
Amblyrhumphus, 283.
American Ant-thrushes, 111, 263.

- Creepers, 261.
- Ostriches, 66, 281.
- Vultures, 271.
-Warblers, 107, 262.

Ammodromus, 285.
Ammomanes, 285.
Amnion, 22 อั.
Ampeliceps, 282.
Ampelide, 262, 287.
Ampelion, 292.
Ampelis, 287.

- garrulus, 106.

Amphispiza, 285.
Amydrus, „S?.
Amytis, 287.
Anabatoides, 292.
Anabazenops, 292.
Anceretes, 201.
Anaplectes, 283.
Anarhynehus, 304.

- frontalis, 57, 58 .

Anas, 305.

- boschas, 14, 15.

Anastomatine, 302.
Anastomurs, 302.
Anatidee, 279, 305.
Ancistrops, 292.
Andigena, 297.
Androdon, 294.
Andropadus, 289.
Androphilus, 289.
Anis, 268.
Anodorhynchus, 299.
Anorrtinus, 296.
Anorthura, 288.

- troglodytes, 96 , 98.

Anous, 304.
Anser, 14, 305.

- cincreus, 14.

Anseranas, 305. Anseres, 278, 305. Anseridee, $278,305$. Anthobaphes, 286.

Anthocephala, 294.
Anthocincla, $\because 92$.
Anthornis, 286.
Anthothreptes, 286.
Authracoceros, 296.
Anthus, 285.

- pratensis, 111.

Antillean subregion,
Birds of, 247.
Ant-thrushes, 109.
-, American, 263.
-, Old World, 263.
--, Wattled, 263.
Anumbius, 292.
Anuropsis, 289.
Aorta, 216.
Apalis, 287.
Aphanapteryx, 238.
Aphantochroa, 294.
Apinelocoma, 281.
Aphobus, 283.
Aplonis, $28 \div$.
Appendicular skeleton, 188.

Aprosmictus, 299.
Aptcnodytes, 306.

- longirostris, 22, 21.

Aptonodytide, 279, 300.

Apterygide, 280, 306.
Apterygiformes, 280, 30 (i.
Apterys, 64, 65, 280, 306.

- -- mantclli, 64, 65.

Aquila, 300.

- chrysaëtos, 126.

Aquiline, 300.
Ara, 299.
Arachothera, 286.
Aramides, 302.
Aramus, 302.
Archeopteryx, 6t, 236.

Arches, visceral, 225.
Archibuteo, 300 .
Ardea, 301.

- cinerea, 36.
- garzetta, 37.

Ardcide, 27ะ, 301.
Ardeina, 30].

Argus, 303.

- giganteus, 4, 5.

Argya, 288.
Ariana, 294.
Arremon, 284.
Arses, 290.
Artamia, 286.
Artamida, 262, 287.
Artamides, 289.
Artamus, 287.
Arteries, 217, 226.
Articulations of leg-
bones, 201.

- of wing-bones, $1!4$.
Artomyias, 290.
Arundinicola, 290.
Asio, 301.
Aspatha, 296.
Astrachia, 282.
Astrapia, 282.
Astur, 300.
- palumbarius, 123.

Asturina, 300.
Asturinula, 300.
Asyndesmus, 297.
Atelomis, 295.
Atlapetes, 285.
Atlas, 171.
Atrichia, 293.
Atrichice, 263, 293.
Atrichiida, 263, 293.
Attagis, 304.
Attlis, 295.
Atticora, 290.
Attila, 291.
Attiline, 291.
Augastes, 294.
Auks, 22, 277.
Aulacortamplous, 297.
Autia, 291.
Australian region,
Birds of, 247 .
and
subregions, 2 ± 1,
246.

- subregion proper,

Birds of, 249.
Automolus, 292.
Avocet, 56, 58, 275.
Avocettula, 294.
Axial skeleton, 168.

Axillary feathers, 158
Axis, 171.
Aythya, 305.
Babax, 288.
Babblers, 116, 262.
Back-bone, 169.
Balenicepince, 302.
Baleniceps, 302.
-rex, 38, 39 .
Balearica, 302.
Barbatula, 297.
Barbets, $74,267$.
Barnardius, 300.
Barn Owl, 129.
Baryphthengus, 296.
Basilcornis, 282.
Basilenterus, 285.
Basilinna, 234.
Batara, 293.
Bathilda, 283.
Batis, 290.
Baza, 300.
Beak, bones of, 180.
Bebrornis, 287.
Bee-eaters, 82, 265.
Beef-eaters, 112.
Bee-guides, 84 .
Bell-bird, 91, 93, 263.

Bellona, 295.
Berenicornis, 296 .
Berlepschia, 292.
Bernieria, 289.
Bhringa, 282.
Bias, 290.
Biatas, 293.
Bill, structure of, 141, 143.

Bird regions of the earth, 239.
Birds, a Class, 1, 2, $252,259$.

- Universal characters of, 2,255 .
- of Paradise, 90, 261.
- of Prey, 123.

Bittern, 36, 37, 272.
Biziura, 305.
Blacicus, 291.
Blackbird, 109.

Blackeap, 106, 107. Buarremon, 284.
Black Swan, 15.
Blade-bone, 189.
Blood, 217.
Blood-vessels, 217.

- , development of, 226 ,
Blue-bill, 261.
Blue Chatterer, 263.
Boat-bill, 38, 279.
Body and Tail, 150.
Bohemian Waxwing, 106.

Bolbopsittacus, 299.
Bolborlhnchus, 299.
Bonasa, 303.
Bones of beak, 180, 181.

- of brain-case, 181
-- of limbs, 188.
Booby, 25.
Boots, 162.
Botaurina, 301.
Botarrus, 301.
--stellaris, $36,37$.
Bourcieria, 294.
Bower-birds, 93, 95 , 261.

Bowers for play, 93, 233.

Brachygalba, 297.
Brachypteracias, 295.
Brachypteraciinee, 295.
Brachypternus, 297.
Brachypteryx, 288.
Brachyrhamphus, 305.
Bradyornis, 287.
Bradypterine, 257.
Bradypterus, 287.
Brain, 217.
Brain-case, bones of, 181.

Branta, 305.
Brazilian subregion, Birds of, 246 .
Breast-bone, 177.
Broadbills, 76, 77, 264.

Bronchi, 211.
Brotogerys, 299.
Brush-tongued Parrots, 269.

Brush-turkeys, 275.

Bubo, 301.
--ignaures, 130.
Bubonide, 271, 301.
Bubonince, 301 .
Buссо, ${ }^{29} 7$.
—— tectus, 7i), 76.
Bucconider, 267, 297.
Bucephala, 305.
Buccros, 296.
——ruficollis, 78.
Buccrotes, 2(65, 296 .
Bucerotide, 265, 296.
Buchanga, 282.

- atra, 12.

Bucorax, 296.
Bulbuls, 117, 26.).
Buphaga, 282.

- crythrorhyncha, $112,113$.
Buphargince, 282.
Burnesia, 287.
Bursa Fabricii, 209.
Busarellus, 300.
Bush-cuckoos, 268.
Bustard Quails, 11.
Bustards, 47, 49, 273.
Butastur, 300.
Butcher-birds, 121.
Buteo, 300.
-_vulgaris, 125.
Buteogallus, 300.
Buteola, 300.
Buteonine, 300.
Buthraupis, 284.
Buzzards, 125, 271.
Bycanistes, 296.
Cacatua, 299.
Cacatuide, 269, 299.
Cacatuince, 299.
Caccabinina, 303.
Caccabis, 303.
Cacomantis, 298.
Cactornis, 284.
Cenotriccus, 291.
Caica, 299.
Cairina, 305.
Calamanthus, 289.
Calamocichla, 287.
Calamonastes, 287
Calamospiza, 285.

Calandrella, 285.
Calcaneal process, 200.
Calcarius, 285.
Calcars, 164.
Calendula, 285.
Calicaticus, 286.
Oalifornian Quail, 11.
Callacanthis, 285.
Callene, 288.
Callicchthrus, 298.
Callipepla, 303.
Callipharus, 294.
Calliphlox, 295.
Calliptilus, 299.
Calliste, 283.
Callocephalon, 299.
Calocheetes, 284.
Calocitta, ‘281.
Calodromas "306.
Calopsittacme, 299.
Calopsittacus, 299.
Calorhamphus, 297.
Calomis, 282.
Calothorax, 295.
Calypte, 295.
Calyptomena, 293.
Calyptomenida, 264, 293.

Calyptophilus, 281.
Calyptorhynchus, 299.
Calyptrura, 292.
Camarhynchus, 284.
Camaroptera, 287.
Campochcera, 289.
Campophaga, 289.
Campophayider, 262, 289.

Campophilus, 297.
Campothera, 297.
Camptolaimus, 305.
Campylopterus, 294.
Campylorhynchus, 288.
Cancroma, 302.

- cochlearia, 38.

Cancromince, 302.
Capercailzie, 10, 275.
Capito, 297.
-_ erythroccphalus, 7.1,75.

Capitonicte, 267, 297.
Caprimulgide, 265, 295.

Caprimulgus, 295.
-- europceus, $86,87$.
Capsicmpis, 291.
Caracaras, 125.
Carcineutes, 296.
Cardellina, 285.
Cardia, 208.
Cardinalis, 284.

- virginianus, 105.

Carduelis, 285.
Cariama, 302.

- cristata, 44,46 .

Cariamas, 273.
Cariamide, 273, 302.
Carinatce, 258, 281.
Carine, 301.
Carotid arteries, 217, 226.

Carpococeyx, 298.
Carpodacus, 285.
Carpodectes, 292.
Carpophaga, 298.
Carpus, 192.
Casarca, 305.
Casiornis, 291.
Cassicine, 282.
Cassiculus, 282.
Cassious, 282.
Cassidix, 282.
Cassinia, 290.
Cassowaries, 280.
Cassowary, 66.
Casuarius, 306.

- galcatus, 66.

Catamblyrhynchus, 284.
Catharistes, 301.
Catharma, 295.
Cathartes, 269, 271,301.

- papa, 128.

Cathartes-like fossil, 237.

Catharus, 288.
Catherpes, 288.
Caudal vertebro, 175.
Celeus, 297.
Central-American subregion, Birds of, 247.
Centrites, 290.
Centropodidce, 268, 298.
Centropus, 298.
Ceophlous, 297.
Cephalolepis, 295.

Cephalopterus, 292.
-- ornatus, 91, 92.
Ceratogymna, 206.
Ceratopipra, 291.
Ceratotriccus, 291.
Cerchneipicus, 297.
Corchneis, 300.
Cercococcyx, 298.
Cercomacra, 293.
Cercotrichas, 288.
Cereopsis, 305.
Cerionnis satyra, 6.
Cerorhinca, 305.
Certhia, 286.

- familiaris, 90.

Certhidea, 284.
Certhiide, 262, 286.
Certhiine, 286.
Certhilauda, 285.
Certhiola, 284.
Certhiparus, „286.
Cervical rettebræ, 171.
Ceryle, 296.
Cettia, 287.
Ceuthmochares, 298.
Ceycopsis, 206.
Сеух, 296.
Chatocercus, 295.
Chetops, 288.
Chatoptila, 286.
Chetorhynchus, 282.
Chetornis, 287.
Chatura, 295.
Cheturince, 295.
Chaffinch, 105.
Chalcococсуx, 298.
Chalcophaps, 298.
Chalcopsar, 282.
Chalcopsittacus, 299.
Chalcostetha, 286.
Chamcea, 288.
Chamкeince, 288.
Chamณospiza, 285.
Cham@pelia, 298.
Chamapetes, 303.
Chumaza, 293.
Chaptia, 282.
Characters of Birdclass, 2, 255, 256.
Charadriide, 275, 304.
Charadrius, 304.

- pluvialis, 57, 59.

Charitornis, 282.
Charmosyna, 299.
Charmosynopsis, 299.
Chasiempis, 290.
Chusmorluynchus, 292.
Chatterers, 91, 263.
Chaulelasmus, 305.
Chauna, 45, 306.
Chaunoproctus, 284.
Chelidon, 290.

- urbica, 94.

Chelidoptera, 297.
Chelidorhynx, 290.
Chenalopex, 305.
Chenorhamphus, 290.
Chera, 283.
Cheramoeca, 290.
Chersophilus, 285.
Chibia, 282.
Chimarrhornis, 288.
Chionis, 304.

- alba, 59, 61.

Chirocylla, 291.
Chiromacheris, 291.
Chiroxiphia, 291.
Chlamydochara, 289.
Chlamydodera, 282.
Chlcuasicus, 289.
Chloris, 284.
Chlorocharis, 289.
Chlorochrysa, 283.
Chlorocichila, 289.
Chloronerpes, 297.
Chloropeta, 290.
Chlorophanes, 284.
Chlorophonia, 283.
Chloropipo, 291.
Chloropsis, 289.
Chlorospingus, 284.
Chlorostilbon, 294.
Chlorothraupis, 284.
Chlorura, 283.
Cholornis, 289.
Chondestes, 285.
Chorda dorsalis, 225.
Chordeiles, 295.
Chotorhea, 297.
Chough, 115.
Chrysococcyx, 298.
Chrysocolaptes, 297.
Chrysolampis, 294.
Chrysomitridops, 284.

Chrysomitris, 285.
Chrysophlegma, 297.
Chrysoptilus, 297.
Chrysotis, 299 .
Chrysuronia, 294.
Chthonicola, 287.
Chunga, 302.
Cichladusa, 288.
Cichlherminia, 288.
Cichlopsis, 288.
Cicinnurus, 282.
Ciconia, 302.

- alba, 42.

Ciconiide, 272, 302.
Ciconiince, 302.
Cinclidœ, $26^{2}, 288$.
Cinclocerthia, "28.
Cinclodes, 293.

- aquaticus, 69, 70.

Cinclorkamphus, 289.
Cinclosoma, '288.
Cinclus, 288.
Cinnamopterus, 282.
Cinnamopteryx, 283.
Cinnicerthia, 288.
Cinnyris, 286.
Circaetus, 300.
Circulatory system, 216.

Circus, 300.

- aruginosus, 123.

Cirrhopipra, 291.
Cissa, 2 s1.
Cissopis, 284.
Cisticola, 287.
Cisticolinue, 287.
Cistothorus, 288.
Cittocincla, 288.
Cittura, 296.
Class of Bircts, 259.
Classification and Phylogeny, 253.

- of Birds, 251.

Clavicle, 190.
Claws of foot, 163.
-- of wing, 158.
Clefts, visceral, 225.
Cleptornis, 286.
Clibanornis, 292.
Climacteris, 286.
Climbers, 131.
Cloaca, 209.

Clypeicterus, 28.2.
Clytoceyx, 296.
Clytoctantes, 293.
Clytolama, 294.
Clytomyias, 290.
Cnemiornis, 238.
Chipodectes, 291.
Cnipolegus, 290.
Coccopygia, 283.
Coccothraustes, 284.
Coccothrarstince, 284.
Coccycolius, 282.
Coccygeal vertebræ,
175.

Coccyges, 267, 298.
Coccystes, 298.
Coccyzus, 298.
Cochoa, 287.
Cockatoos, 71, 269.
Cock-of-the-Rock, 91, 263.

Coeligena, 294.
Careba, 28t.
Cœrcbide, 261, 284.
Carebince, 281.
Colaptes, 297.

- campestiris, 71.

Colies, Su, 81, 265.
Coliidœ, 265, 296.
Colius, 296.
-capensis, $80,81$.
Collocalia, 295.
Collyriocincla, 287.
Colous, 281.
Colopterus, 291.
Columba, 298.

- livia, 13.

Columber, 268, 298.
Columbide, 269, 298.
Columbiformes,268,298.
Columbince, 298.
Columbuta, 298.
Colymbida, 277, 305.
Colymbus, 305.
-glacialis, 20, 21.
Common Fowl, 3.
Compsocoma, 284.
Condition of young as
to plumage, 230 .
Condor, 128, 271.
Conirostral birds, 132.
Conirostrum, 284.

Connection between digits, 161.
Conopias, 291.
Conopophaga, 293.
Conopophagide, 263, 293.

Conostoma, 289.
Conothraupis, 284.
Contopus, 291.
Contour feathers, 166.
Conurince, 299.
Conuropsis, 299.
Conurus, 299.
-... carolinensis, 71,
Coots, 18, 274.
Copsychus, 288.
Copurne, 290.
Coracie, 264, 295.
Coracias, 295.

- garrula, 94, 96.

Coraciider, 265, 295.
Coraciilformes, 264, 295.

Coraciince, 295.
Coracoid, 188.
Coracopitta, '292.
Coracopsis, 299.
Corcorax, 281.
Coriphilus, 299.
Cormorants, 24, 25, 272.

Corn-crake, 17, 18.
Corone, 281.
Corpuscles of blood, 217.

Corvide, 261, 281.
Corvine, 281.
Corvinella, 287.
Corvultur, 281.
Corvus, 281.
Corydon, 293.
Coryphistera, 292.
Coryphospingus, 285.
Coryphospiza, 285.
Corythreola, 298.
Corythocichla, 289.
Coryitzopis, 293.
Corythornis, 296.
Cosmopsarus, 282.
Cossypha, 288.
Cotile, 290.
Cotinga, 91, 292.

Cotingidce, 263, 292.
Cotingine, 291.
Coturnix, 303.
--communis, 10.
Соиа, 298.
Courser, 48, 50, 275.
Covering of tarsus and digits, 162.
Covers, 67.
Coverts of tail, 153.
-- of wings, 156 .
Cracide, 275, 303.
Cracince, 303.
Cracticus, 286.
Cranes, 42, 43, 44, 273.

Cranial skeleton, 179.
Cranorrhinus, 296.
Crateropodince, 288.
Crateropus, 289.
Crateroscelis, 289.
Crax, 303.

- alector, 8.

Creadion, 281.
Creepers, 99, 262.
Creurgops, 28.
Crex, 302.
-_ pratensis, 17, 18.
Criniger, 289.
Crocomorphus, 297.
Crooked-billed Plover, 57, 58, 275.
Crop, 208.
Crossbill, 105.
Crosslcyia, 289.
Crossoptilon, 303.
Crotophaga, 298.
Crotophagider, 268, 298.

Crows, 113, 261.
Crus, 158.
Crypsirhina, 281.
Cryptolopha, 290.
Cryptorhina, 281.
Cryptornis, 237.
Cryptospiza, 283.
Crypturi, 279, 306.
Crypturus, 306.
Cuckoos, 85, 268.
——, Bush, 268.
--, large-headed, 268.

Cuckoos, true, 268.
Cuckoo-shrikes, 262.
Cuculi, 268, 298.
Cuculide, 268, 298.
Cuculus, 298.

- canorus, 85.

Culicicapa, 290.
Culicivora, 291.
Cuphopterus, 287.
Curceus, 283.
Curassows, 8, 275.
Curlew, 50, 275.
Cursorial birds, 68.

- foot, 164.

Cursorius, 304.
-_gallicus, 48, 50.
Cutia, 289.
Cuvier's Classification, 132, 252.
Cyanicterus, 284.
Cyanocitta, 281.
Cyanocorax, 281.
Cyanolesbia, 294.
Cyanolyseus, 299.
Cyanomyia, 294.
Cyanomyias, 290.
Cyanophaia, 294.
Cyanopolius, 281.
Cyanops, 297.
Cyanopsittacus, 299.
Cyanorhamphus, 300.
Cyanospiza, 28.5.
Cyanotis, 291.
Cybernetes, 290.
Cyclopsittacide, 269, 299.

Cyclopsittacus, 299.
Cyclorhis, 287.
Cygnida, 279, 305.
Cygnus, 305.

- nigricollis, 15.

Cymbilanius, 293.
Cymborhynchus, 293.
Cyphorhinus, 288.
Cypselida, 265, 295.
Cypseline, 295.
Cypseloides, 295.
Cypselus, 295.
-- apus, 96.
Cypsnagra, 284.
Cyrombo, 94, 265.
Cyrtonyx, 303.

Dabchick, 19.
Dacelo, 296.
Dacclonine, 296.
Dacnidince, 284.
Dacnis, 281.
Dafila, 305.
Damophila, 294.
Darters, 25, 272.
Dasycrotapha, 289.
Dasylophus, 298.
Dasyptilus, 299.
Definition of Birds, 255.

Delattria, 294.
Delothraupis, 283.
Demoiselle Crane, 43, 44.

Dendrexctastes, 202.
Dendrobates, 297.
Dendrobiastes, 289.
Dendrocincla, 292.
Dendrocitta, 281.
Dendrocolaptes, 292.
——radiolatus, 117.
Dendrocolaptida, 263 , 292.

Dendrocolaptince, 292.
Dendrocoptes, 297.
Dendrocopis, 297.
Dendrocygna, 305.
Dendrcca, 285.
Dendropicus, 297.
Dendroplex, 292.
Dendromis, 292.
Dendrortyx, 303
Dentirostral Birds, 132.

Deposits, geological, $\because 35$.
Deroptyus, 299.
Desmognathous structure, 185.
Development of Birds, $\because 24$.
Diaphorophyia, 290.
Diaphragm, 206.
Dicride, 262, 286.
Diсєит, 286.
Dichoceros, 296.
Dicranostreptus, 282.
Dicrocercus, 295.
Dicruride, 261, 282.

Dicruvus, 282.
Didunculide, 269, 299.
Didunculus, 299.

- strigirostris, 13, 14.

Didus ineptus, $6 \pm$.
Digenea, 290 .
Digits, 154 .
-- and phalanges of foot, 200 .

- -- of pinion, 193.

Diglossa, 284.
Diglossinee, 284.
Diglossopis, 284.
vilophus, $\because 8 \%$.
Dinemellia, 283.
Dinomis, 63, 73, 238.
Diomedea, 304.

- exulans, 32.

Diomedeidce, 276, 304.
Dioptrornis, 290.
Diphlogana, $29 t$.
Diphyllodes, 282.
Diplopteridee, 268, 298.
Diplopterus, 295.
Dipper, 69, 70.
Dippers, 26.
Discura, 295.
Dishwashers, 111.
Disposition of air-sacs, 215.
... of digits, 160
Dissemuroides, 282.
Disscmurulus, 282.
Disscmurus, 28 פ.
Diruca, 285.
Diucopis, 284.
Divers, 20, 21, 277 .
Dives, 283.
Divisions of Birds, 251.
—— of Passeriformes, 263.

Docimastes; 294 .
Dodo, 14, 64,238 .
Doleromyia, 294.
Dolichonyx, 283.
Doliomis, 29%.
Dolospingus, 284.
Donacobius, 288 .
Doricha, 295.

Dorsal rertebrex, 179.
Doves and Pigeons, 269.

Downy feathers, 166 .
Drepanidide, 262, 284.

Drepanis, 284.
Drepanorhynchus, 286.
Drepanornis, 281.
Dromeidce, 280, 306.
Dromeiformes, 280 , 306.

Dromceocereus, 287.
Dromarognathous
structure, 185.
Dromcornis, 235.
Dromeus, 306.

- nove-hollundice, 66, 67.
Dromas, 304.
Dromococeyx, 298.
Drongo Shrikes, 122.
Drongos, 261.
Drymaœdus, 288.
Drymocataphus, 289.
Drymochera, 289.
Drymocichla, 287.
Drymornis, $\because 92$.
bridgesi, 118, 119.
Dryococcyx, 298.
Dryodromas, "st.
Dryonastes, 289.
Dryoscopus, 286.
Dryotomus, 297.
Dryotriorchis, 300 .
Duটusia, 284.
Ducks, $14,15,279$.
Dulus, 287 .
Dumetia, 259.
Dunlin, 54 .
Dysithamnus, 293.
Dysode, 274, 303.
Eagle-owl, 130, 271.
Eagles, 126, 271.
Ear, 142.
-, structure of, 219.
Eclectus, 299.
Ecteron, 135.
Ectopistes, 298.
Edoliisoma, 289.
Edolius, 28.

Eggs, size and shape of, 228.
——, structure of, 224 .
Egrets, 37.
Elachura, 288.
Elainea, 291.
Elaineinc, 291.
Elanoides, 300 .
Elanus, 300.
Elaphromis, 289.
Eleothreptus, 295.
Ellisia, 287.
Elminia, 290.
Elvira, 294.
Emberiza, 285.

- hortulana, 105.
--schoniclus, 105.
Emberizina, 285.
Emberizoides, 285.
Embernagra, 285.
Emblema, 283.
Emeu, 66, 67.
Emeus, 280 .
Empidagra, 291.
Empidias, 201.
Empidochanes, 291.
Empidonax, 291.
Empidonomus, 291.
Enderon, 135.
Enodes, 282.
Entomophila, 286.
Entomyza, 286.
Eophona, 284.
Eopsaltria, 287.
Eos, 299.
Ephthianura, 288.
Epidermis, 135.
Epimachine, 251.
Epimachus, 281.
Epiotic bones, 227 , 228.

Ercmomela, 287.
Eremomelince, 887.
Ercunetes, 304.
Ergaticus, 285.
Eriocnemis, 295.
Erismatura, 305.
Erismaturide, 279, 305.

Erithacus, 288.
——luscinia, 109.

- rubicola, 109.

Erocssa, 287.
Erythrobucco, 297.
Erythrocercus, 290.
Erythrocichla, 289.
Erythrocnema, 300.
Erythromyias, 290.
Erythropygia, 288.
Erythrospiza, 285.
Erythrura, 283.
Estrilda, 283.
Ethiopian region, Birds of, 243 .

- - and sub)regions, 239, 243.
Eucephala, 294.
Eucichla, 292.
Eucometis, 284.
Eucorystes, 282.
Eudosia, 294.
Eudynamis, 298.
Eudyptes, 306.
Eugenes, 204.
Eugenia, 29t.
Eulcabes, 282.
- religiosa, 113, 114.

Eulabetide, 261, 282.
Eulabetince, 282.
Eulampis, 294.
Eumomota, 296.
Eupetes, 288.
Eupetomena, 294.
Euphorusa, 294.
Euphonia, 283.
Euphoniince, 283.
Euplocamince, 303.
Euplocamus, 303.
Eupodotis, 302.
Euprinodes, 287.
Eupsychortyx, 303.
Euptilotis, 296.
Eurocephalus, 287.
European subregion, Birds of, 242.
Eurostopodus, 295.
Euryceros, 282.
Euryccrotida, 261, 282.
Eurylami, 260, 293.
Eurylamidce, 264, 293.
Eurylamus, 293.

- javanicus, 76, 77.

Eurynorhynchus, $30 t$.

Eumptila, 2sio.
Eurypyga, 302.
-hclias, 37.
Eurypygide, 273, 302.
Eurystomus, 295.
Euscarthmus, 291.
Eustophanus, 294.
Euthyrhynchus, 286.
Eutoxercs, 294.
Eye, structure of, 220 .
Eyelids, 223.
Falco, 300.
—— candicans, 124.

- peregrinus, 123.
- tinnunculus, 124.

Falcones, 269, 270, 300.

Falconida, 271, 300.
Falconine, 300.
Falcons, 123, 271.
Falculia, 281.
Falcunculus, 287.
Feathers, structure of, 137-139.
Feet, 164.
Femur, 197.
Fenestra ovalis, 220, 227.

- rotunda, 220, 227.

Fibula, 198.
Fieldfare, 108.
Finches, 105, 262.
Fin-feet, 274.
Fin-foot (American), 19.

Fingers, 154.
Fissirostral Birds, 132.
Flamingo, 34, 35, 279.
Floricola, 294.
Florisuga, 294.
Flower-peckers, 262.
Flycatchers, 115, 116, 262.

Foot, 158.
Foramina for nerves, 182.

Formicariide, 263, 293.
Formicariince, 293.
Formicarius, 293.
_- crissalis, 110, 111.
Formicivora, 293.

Forms of bony palate, 185.

Fossils, what they may be, 235.
Foudia, 283.
Fowls, 3, 275.
Francolinus, 303.
Fraseria, 287.
Fratercula, 305.
——aretica, 23, 25.
Fregiline, 281.
Fregilupus, 282.

- varius, 238.

Frigate-bird, 32, 272.
Fringilla, 285.

- calebs, 105.

Fringillaria, 285.
Fringillida, 262, 284.
Fringillince, 285.
Frog-mouths, 265.
Fulica, 302.

- atra, 18.

Fulicarie, 273, 302.
Fuligula, 305 .
Fuligulide, 279, 305.
Fulix, 305.
Fulmarrus, 304.
Fulvetta, 289.
Fulvicola, 290.
Furculum, 190.
Furnariince, 292.
Furnarius, 292.

- auricularius, 118, 120.

Galbalcyrhynchus, 297.

Galbula, 297.

- viridis, 75, 77.

Galbulida, 267, 297.
Galbulina, 297.
Galcopsar, 282.
Galeoscoptes, 288.
Galerita, 285.

- cristata, 109.

Galliformes, 274, 303.
Gallinaceous Birds, 12, ${ }^{(17}$.
Galline, 274, 303.
Gallinago, 304.

- media, 53.

Gallinula, 302.
-chloropus, 17.
Gallinaline, 302.
Gallirex, 298.
Galloperdix, 303.
Gallus, 12, 303.
——bankiva, 4 .
Gampsonyx, 300.
Gcmpsorhynchus, 288.
Gannet, $25,26,27$, 272.

Gare-fowl, 22.
Garrulax, 289.
Garrulus, 281.
-glandularius, 113.
Gastornis, 237.
Gauropicoides, 297.
Gavice, 275, $30 \pm$.
Gazzola, 281.
Gecinulus, 297.
Gecinus, 297.

- viridis, 71.

Geese, 14, 278.
Generative system, 209.

Geobates, 292.
Geobicstes, 295.
Geooichla, 288.
Gеососсух, 298.
Geocolaptes, 297.
Geoffroyus, 299.
Geography of Birds, 238.

Geology of Birds, 236.
Gcopelic, 298.
Geophaps, 299.
Geopsittacus, 300.
Geositta, 292.
Geospiza, 284.
Gcothlypis, 285.
Geranospizias, 300.
Gervaisia, 288.
Gerygone, 290.
Girdles for limbs, 168.

Gizzard, 208.
Glareola, 304.
-. pratincola, 60, 61.

Glaucidium, 301.
Glaucis, 291.
Glaucopis, 281.

Glossiptila, 284.
Glossiptilince, 284.
Glossopsittacus, 299.
Glycyphila, 286.
Glyphorhynchus, 292.
Gnat-eaters, 263.
Gnathosittaca, 299 .
Goatsucker, 87, 265.
Godwit, 55, 275.
Gold-crests, 262 .
Golden-crested Wren, 96.

Goosander, 16, 279.
Goshawk, 123.
Goura, 298.
Gourince, 298.
Grackles, 113, 114.
Graculipica, 2 8.2.
Graculus, 281.
--graculus, 115.
Gralle, 68.
Grallaria, 293.
Grallaricula, 293 .
Grallarine, 293.
Grallatorial Birds, (i).

- foot, 164.

Graminicola, 287.
Girammatoptila, 289.
Granatellus, 285.
Granatina, 283.
Graucalus, 289.
Great Auk, 22, 23, 238.

Grebes, 19, 20, 277.
Green-headed Bunting, 105.

Greenland Falcon, 124.

Greenlets, 262.
Grey Goose, 14 .
Groups, main, of Passeriformes, 263.
Grouse, 9.
Gruaria, 273, 302.
Gruide, 273, 302.
Grus, 302.

- cinerca, 42.
- virgo, 43, 44.

Gubernatrix, 285.
Guillemots, 21, 22. 277.

Guinea-fowls, 5, 275.
Guira, 298.
Guiraca, 284.
Gullet, 208.
Gulls, 28, 29, 276.
Gygis, 304.
Gymmasio, 301.
Gymmobucco, 297.
Gymnocephatus, 292.
Gymnocichla, 993.
Gymnocorax, 281.
Gymnoderince, 292.
Gymnoderus, 292.
Gymnokitta, 281.
Gymnolcomus, 296.
Gymmomystax, 283.
Gymnopithys, 293.
Gymnorhina, 286.
Gymnorhinine, 286.
Gymnoschizorhis, 298.
Gymnostinops, 282.
Gypactus, 300.
Gypogeraniude, $\quad 271$, 301.

Gypogeranus, 301.

- - serpentarius, 129 .

Gypolierax, 300.
Gypoictinia, 300.
Gypopsittacus, 299.
Gyps, 300.
Gypsophila, 289.
Habroptila, 302.
Habrura, 291.
Hadrostomus, 291.
Hœmatoderus, 292.
Hematopus, 304 . 56.

Hamophila, 285.
Hagiopsar, 282.
Halcyon, 296.
Halcyones, 264, 296.
Halcyornis, 237.
Haliactus, 300.
Haliastur, 300.
Hammer-head, 39, 40.
Hangnests, 261.
Hapalarpactes, 296.
Hapalocercus, 291.
Hapaloderma, 296.
Hapaloptila, 297.

Haplospiza, 285.
Harderian gland, 223.
Harelda, 305.
Harlequin Duck, 15.
Harpa, 300.
Harpactes, 296.
Harpagornis, 64, 238.
Harpagies, 300.
Harporhynchus, 288.
Harpyhaliactus, 300.
Hartlaubius, 28.2.
Hawks, 271.
Head, 141.
... and Neck, 141.
Hearing, organ of, 219.
Heart, 216.
Hedymeles, 284.
Heliactin, 295.
Heliangelus, 294.
Helianthea, $29 \pm$.
Hclicura, 291.
Heliobletus, 292.
Heliobucco, 297.
Heliocluera, 292.
Heliocorys, 285.
Heliodoxa, 294.
Heliomaster, 294.
Heliornis, 302.

- fulica, 19.

Heliornithide, 273, 302.

Heliothrix, 294.
Heliotryplua, 294.
Helminthophila, 285.
Helminthotherus, 285.
Helotarsus, 300.
Hemicercus, 297.
Hemichelidon, 290.
Hemidacnis, 284.
Hernignathus, 284.
Hemilophus, 297.
Hemipodes, 11, 273.
Hemipus, 287.
Hemistephania, 294.
Hemitriccus, 291.
Hemixus, 289.
Henicognathus, 299.
Henicophaps, 298.
Henicorhina, 288.
Hen icomis, 292.
Hen: синіпœ, 288.
Heı curus, 288.

Henisapernis, 300.
Hepburnia, 303.
Herodiones, 272, 301.
Heron, 36, 272.
Herpetotheres, 300 .
Herpornis, 289.
Herpsilochmus, 293.
Hesperiphona, 284.
Hesperornis, 64, 237.
Heteralocha, 281.

- acutirostris, 93, 95.

Heteranax, 290.
Heterhyphantes, 283.
Heterocercus, 291.
Heterocnemis, 293.
IFeteroccelous vertebræ, 171.

Heterocorax, 281.
Heterocorys, 285.
Heteroglaux, 301.
Hetcromyias, 290.
Heteropelma, 291.
Heteropsar, 282.
Hetcrospizias, 300.
Hieracidea, 300.
Hierococcyx, 298.
Hierofalco, 300.
Hilarocichla, 286.
Himantopus, 304.

- melanopterus, 56, 57.

Himathornis, 302.
Himatione, 284.
Hips, skeleton of, 194.
Hirundinea, 291.
Hirundinider, 262, 290 .
Hirundinince, 290 .
Hirundo, 290.
-_rustica, 96, 97.
Histurgops, 283.
Hoatzin, 92, 94, 274.
Hobby, 124.
Hodgsonius, 288.
Holorhinal structure, 181.

Homorus, 292.
Honey-eaters, 262.
Honey-guides, St, 267.
Honey-suckers, 99, 100.
Hoopoe, 86, 87, 267.
Hornbills, 78, 265 .

Horned Owls, 130.

- Screamer, 45, 47, 279.
-_Tragopan, 5, 6.
Huia-bird, !2.
Humblotia, 290 .
Humeral coverts, 157.
Humerus, 190.
Humming-birds, 100, 264.

Hydrochelidon, 304.
Hydrocichla, 288.
Hydrocorax, 296.
Hydrophasianus, 304.

- chirurgus, 62.

Hyetornis, 298.
Hylacola, 288.
Hylactes, 293.
Hylexctastes, 292.
Hylia, 287.
Hyliota, 290.
Hylocharis, 294.
Hylomanes, 296.
Hylonympha, 291.
Hylophilus, 287.
Hymenolaimus, 305.
Hyoid, 187.
Hypergerus, 288.
Hyphantornis, 283 .
Hypochara, 283.
Hypocharmosyna, 209.
Hypocnemis, 293 .
Hypocolius, 287.
Hypolais, 287.
Hypophea, 283.
Hypopicus, 297.
Hypopyrrtues, 288.
Hypositta, 286.
Hypotarsus, 200.
Hypothymis, 200.
Hypoxanthus, 297.
Hypsipetes, 289 .
Hypuroptila, 294.
Iache, 294.
Ianthocincla, 288.
Ibididre, 273, 302.
Ibidorhynchus, 304.
Ibis, 302.

- athiopica, 5?, 53. falcinellus, 52.
rubra, 52.

Ibises, 52, 53, 273.
Tbyeter, 300.
Ichthyornis, 64, 237.
Icteria, 285.
Icteride, 261, 282.
Icterince, 283.
Icteropsis, 283.
Icterus, 283.
Ictinia, 300.
Idiopsar, 285.
Ilium, 195.
Impennes, 279, 306.
Incubation, 229.
Indian region, Birds of, 244. - and subregions, 240,244 .
Indicator, 297.

- major, 84.

Indicatoride, 267, 297.
Indicators, 84.
Ingluvies, 208.
Insessores, 131.
Insessorial foot, 161.
Intermal skeleton, 167.

Intestine, 205.
Intromittent organ, 310.

Iodopleura, 292.
Iolcema, 294.
Iole, 289,
Ipoorantor, 297.
Irena, 289.
Iridomis, 283.
Irrisor, 296.

- jaclisoni, 87, 89.

Irrisorida, 296.
Ischium, $\mathbf{1 9 \%}$.
Ispidina, 296.
Ithaginis, 303.
Irocincla, 289.
Ixonotus, 289.
Ixulus, 289.
Iyngince, 297.
Iyngipicus, 297.
Iynx, 297.
Jacamaralcyon, 297.
Jacamars, $75,77,267$.
Jacameropince, 297.
Jacamerops, 297.

Jacana, $6:$.
Jackdaw, 115.
Jaws, movements of, 186.

Jays, 113.
Junco, 285 .
Jungle-fowl, 3 .
Kagu, 46, 48, 273 .
Kea Parrot, 72, 73, 269.

Kelaartia, 289.
Kenopia, 289.
Kestrel, 124.
Ketupa, 301.
Kidney, 209.
King-bird, 119.
Kingfisher, 68, 69, 265.
King Penguin, 22, 23, 24.

- Vulture, 128.

Kite, 123.
Klais, 295.
Knot, 54.
Labyrinth, bony, 220 .
Lafresnaya, $29 \ddagger$.
Layonosticta, 283.
Lagopus, 303.

- scoticus, 9.

Lalage, 289.
Lalctes, 287.
Lamellirostres, 277 , 305.

Lampomis, 294.
Lampraster, 294.
Lamprocolius, "-28.
Lamprolama, 294.
Lamprolia, 288.
Lampropsar, 283.
Lampropygia, 294.
Lamprospiza, こS4.
Lamprotes, 284.
Lamprotince, 284.
Lamprotomis, 282.
Land-rail, 17.
Laniarius, 286.
Laniellus, 287.
Lanizdre, 262, 286.
Laniince, 287.
Lanio, 281.
Lanioturdus, 290 .

Lanius, 287.

- collurio, 121.

Lapwing, 59.
Large-headed Cuckoos, 268.

Laride, 276, 30t.
Larince, 304.
Larks, 109, 262.
Larus, 301.

- canus, 28, 29.

Larynx, 211.
-, lower, 211.
Lathria, 291.
Laticilla, $\because 87$.
Lawrencia, 291.
Leg, 158.
_-, skeleton of, 196.

- bones, articulations of, 201.
- muscles, 204.

Legatus, 291.
Leipoa, 304.

- ocellata, 8, 9.

Leistes, 283.
Length of digits, 161.
Lepidogrammus, 298.
Lepidolarynx, 294.
Lepocestes, 297.
Leptasthenura, 292.
Leptodon, 300.
Leptopecile, 286.
Leptopogon, 291.
Leptopterus, 287.
Leptoptilus, 302.
-dubius, 40, 41.
Leptornis, 286.
Leptosoma, 295.

- discolor, 94.

Leptosomiulc, 265, 295.
Leptotriccus, 291.
Lerwa, 303.
Lesbia, 294.
Leucippus, 294.
Leucochloris, 294.
Leucopeza, 285.
Libyan subregion,
Birds of, 243.
Lichenops, 290.
Licmetis, 299.
Ligia, 285.
Limb-girdles, 168.
Limbs, 153.

Limbs, skeleton of, 188. Loxia, 285.
Limicola, 275, $304 . \quad$ curvirostica, 105.
Limicoliformes, 275, Loxigilla, 284. 304.

Limnophyes, 292.
Limnomis, 292.
Limonidromus, 285.
Limosa, 304.

- melanura, 55.

Linnean classification, 252.

Limura, 283.
Liocichla, 289.
Liopicus, 297.
Lioptila, 288.
Lioptilus, 290.
Liosceles, 293.
Liothrix, 289.
Liotrichine, 289.
Lipaugine, 291.
Lipaugus, 291.
List of Bird orders, 258.
Lithornis, 237.
Liver, 209.
Lobivanellus, 59, 304.
Lobomis, 286.
Lobotus, 289.
Lochmias, 292.
Locustella, 287.
Loddigesia, 295.
Lophoaetus, 300.
Lophoccros, 296.
Lophogyps, 300.
Lophoictinia, 300.
Lopholaimus, 298.
Lophophorince, 303.
Lophophorus, 303.
Lophopsittacus, 238.
Lophorhina, 282.
Lophomis, 295.
Lophortyx, 303.

- californicus, 11.

Lophospingus, "85.
Lophotriccus, 291.
Lophotriorchis, 300.
Loriculus, 299.
Lories, 269.
Loriidee, 269, 299.
Lorius, 299.
Love-birds, 71, 269.
Lower jaw, skeleton of, 186.

Loximitris, 285.
Loxioides, 286.
Loxops, 284.
Lulluta, 285.
Lumbo-sacral vertebra, 173.

Lungs, 215.
Lusciniola, 287.
Lycocorax, 282.
Lyre-bird, 89, 90.
Macaws, 71, 269.
Macherhamphus, 300.
Machœropterus, 291.
Macharorhynchus, 290.
Machetes, 304.

- pugnax, 55.

Machetornis, 290.
Macragelæus, 283.
Macrocorax, 281.
Macrodipteryx, 295.
Macronus, 289.
Macronyx, 285.
Macropteryginee, 295.
Macropteryx, 295.
Macropygia, 295.
Macrosphenus, 289.
Macruropsar, 282.
Magpies, 114, 115.
Malacias, 288.
Malaconotince, 286.
Malacopterum, 289.
Malacoptila, 207.
Malacorhynchus, 305.
Malacothraupis, 284.
Malayan subregion, Birds of, 2 ± 4.
Malia, 289.
Malimbus, $\because 83$.
Mallard, 14, 15.
Malurus, 97, 290.
Manakins, $90,91,263$.
Mandarin Duck, 15.
Mandible, 141.
Manorhina, 286.
Manucodia, 282.
Marabou, 40.
Marcea, 305.
Maryaromis, 292.

Marsh Harrier, 123.
Marsupium, 223.
Martins, 94, 96 .
—— and Swallows, 262.
Mascarene subregion,
Birds of, 244.
Masires, 291.
Maxilla of bill, 141.

- of skull, $180,184$.

Mecocerculus, 290.
Mediterraneo-Persic subregion, Birds of, $\because 42$.
Megabias, 290.
Megacephalon, 304.
Megalema, 297.

- - asiatica, 74.

Megalurulus, 288.
Megalurus, 257.
Megapodes, 8, 275.
Megapodide, 275, 304.
Megapodius, 304.
Megarhynchus, 291.
Melenornis, 287.
Melanerpes, 297.
Melanobucco, 297.
Melanocharis, 286.
Melanocichla, 289.
Melanocorypha, 285.
Melanopteryx, 283.
Melanoptila, 288.
Melanopyrrtus, 282.
Melanorectes, 287.
Melanotis, 288.
Meleagrine, 303.
Meleagris, 303.
-- ocellata, 7.
Melidectes, 286.
Melidora, 296.
Melierax, 300.
Meliornis, 286.
Meliphaga, 286.
-phrygia, 99, 100.
Meliphagide, 262, 286.
Meliphagince, 286.
Melirrhophetes, 286.
Melithreptus, 286.
Melitograis, 286.
Melittophagus, 295.
Mellisuga, 295.
Melophius, 285.
Melopsittacus, 300.

Melopyrrha, 284.
Melospiza, 285.
Membranous labyrinth, 220.

Men-of-war Birds, 32.
Menura, 293.
-_superba, 89, 90.
Mеnиге, 263, 293.
Menuride, 293.
Merganetta, 306.
Mergansers, 15.
Mergellus, 306.
Mergidœ, 279, 306.
Mergus, 306.

- merganser, 16.

Merlin, 124.
Meropidঞ, 265, 295.
Meropogon, 295.
Merops, 295.
——apiaster, 82.
Merrythought, 190.
Merula, 288.
Merulaxis, 293.
Mesia, 289.
Mesites, 302.
Mesobucco, 297.
Mesomyodi, 262, 263, 290.

Mesomyoidal structure, 214.

Mesopicus, 297.
Metabolus, 290.
Metacarpus, 192.
Mctallura, 294.
Metopia, 291.
Metopothrix, 291.
Micrastur; 300.
Microcerculus, 288.
Microchera, 294.
Microcichla, 288.
Microcorax, 281.
Microdynamis, 298.
Micraca, 290.
Microglossus, 299.
Microhierax, 300.
Micromonacha, 297.
Micropternus, 297.
Micropus, 289.
Microsittace, 299.
Microspingus, 28 士.
Mierostictus, 297.
Mierothene, 301.

Miglyptes, 297.
Migration, 233.
Miliaria, 285.
Milvulus, 291.
Milvus, 300.
-regalis, 123.
Mimida, 262, 288.
Mimocichla, $\because 85$.
Mimodes, 288.
Mimus, 288.
-polyglottis, 109.
Minla, 289.
Mino, 282.
Mionectes, 291.
Mirafra, 285.
Miro, 290.
Misocalius, 298.
Mitrephanes, 291.
Mitua, 303.
Mixomis, 289.
Mniotilta, 285 .
Mniotiltidce, 262, 285.
Moas, 63.
Mocking-birds, 109,

Moho, 286.
Molothrus, 283.
Momotida, 265, 296.
Momotus, 296.

- momotus, 83.

Monacha, 297.
Monachalcyon, 296.
Monachella, 290.
Monarcha, 290.
Monticola, 288.
Montifringilla, 285.
Moor-hens, 16, 17, 274.
More-porks, 265.
Morocuccyx, 298.
Morphmas, 300.
Morphology, 133.
Motacilla, 285.

- lugubris, 111.

Motacillide, 262, 285.
Motmots, 83, 265.
Moulting, 140.
Mound-builders, 275 .
Mound-building birds, 8, 9.
Moupinia, 289.
Mouse-bird, 82.
Mouth, 206 .

Morements of jaws, 186.

Mиnia, 283.
Muscicapa, 290.

- griscola, 115, 116 .

Muscicapidce, 262, 290.
Muscicapula, 290.
Muscigralla, 290.
Muscipipra, 290.
Muscieaxicola, 290.
Muscivora, 291.
Muscles of leg, 204.

- of organs of song, 213.
- of syrinx, 213. -- of wing, 203.
Muscular system, 202.
Muscylca, 290.
Musophaga, 298.
- violacca, 79.

Musophagi, 267, 298.
Musophngida, 268, 298.
Mycerobas, 281.
Mycteria, 302.
-_ americanc, 43.
Myiadectes, 288.
Myiadectince, 288
Myiayra, 200.
Myiarchus, 291 .
Myiobius, 291.
Miyioceyx, 296.
Myiochanes, 291.
Myiodioctes, 285.
Myiodynastes, 291.
Myiopatis, 291.
Myiophoneus, 288.
Myiotheretes, 290.
Myiozetetes, 291.
Myna, 113.
Myyology, 202.
Myopsittacus, 299.
Mypmeciza, 293.
Myrmecocichla, 288.
Myrmotherula, 293.
Myrtis, 295.
Mystucornis, 289.
Myzomela, 286.
Myzomeline, 286.
Myzornis, 289.
λ^{\top} nra, 304.
Nanodes, 300.

Nasica, 292.
Nasiterna, 209.
Nasiternince, 299.
Natatorial foot, 164.
Natatory Birds, 68.
Nauclerus, 300.
Nearctic region, Birds of, 245.
-- and subregions, 240,245 .
Neck, 148.
Nectantes, 293.
Nectarinia, 286.
-_metallica, 101.
Nectariniide, 262, 286.
Nelicurvius, 283.
Nemosica, 284.
Neochloc, 287.
Neochmia, 283.
Neocichla, 289.
Neocorys, 285.
Neodrepanis, 2 SG.
Neolesbia, 294.
Neolestes, 286.
Neomixis, 289.
Neomomphide, 268, 298.
Neomorphus, 298.
Neomyias, 290.
Neopelma, 291.
Neophema, 300.
Ncopheron, 300.

- percnopterus, 128.

Nеоріро, 291.
Ncopsittacus, 299.
Ncopus, 300.
Neorhynchus, 284.
Neotropical region, Bircls of, 246 .
-_ and sub-
regions, 240,246 .
Nervous system, 217.
Nesacanthis, 283.
Nesoccleus, 297.
Nesocichla, 258.
Nesoctites, 297.
Nesonettel, 305.
Nesopsar, 283.
Nesospingus, 284.
Nesospiza, $\because 85$.
Nestor, 299.
-.- notabilis, 72, 73.

- productus, 238.

Nestoridæ, 269, 299.
Nestors, 269.
Nests, shapes of, 231.
Nettapus, 305.
New Guinea, \&c., Birds of, 248.
Newtonia, 290.
New-Zealand subregion, Birds of the, 249 .
-Wrens, 263.
Nicator, 286.
Nictitating membrane, 222, 223.
Nidification, 230.
Night-heron, 37.
Nightingale, 109.
Nightjar, 86.
Nigrita, 283.
Nilaus, 286.
Niltava, 290.
Ninox, 301.
Niscuetus, 300.
Nisoides, 300.
Nomenalature. Zoological, 4.
Nonmula, 297.
Nose, 142.
_, as a sense-organ. 219.

Nostrils, 142, 146.
Nothocercus, 306.
Nothocrax, 303.
Nothoprocta, 306.
Nothura, :306.
Notochord, 225.
Notodela, 288.
Notomis, 274, 302.

- mantelli, 63.

Nucifraga, 281.
Numenius, 304.

- arcuatus, 50.
- phrcopus, 52.

Nrmida, 303.

- cristata, 7.
- meleagris, 5.

Numidince, 303.
Nuthatch, 97, 98.
Nyctala, 301.
Nyetca, 301.
Nyctiardea, 301.
Nyctidromus, 295.
Nyctiornis, 295.

Nymphicus, 300.
Ochthodicta, 290.
Ochthreca, 290.
Ochthornis, 290.
Ocyalus, 282.
Ocyceros, 200.
Ocydromus, 302.

- australis, 63.

Ocyphaps, 298.
Odontophorince, 303.
Odontophorus, 303.
Odontopteryx toliapus, 237.

Odontorhynchucs, 288.
Edicnemus, 304.

- crepitans, 59, 60.

Eddistoma, 286.
(Ena, 298.
CEsophagus, 208.
Estrelata, 304.
Oidemia, 305.
Oil-bird, 122, 123, 265.
Oil-gland, 151.
Old-World Antthrushes, 263.
Olfactory foramen, 182.
Oligomyode, 262, 263, 290.

Oligomyoidal structure, 214.
Oligutra, 289.
Ombrette, 272.
Oncostoma, 291.
Onycognathus, 282.
Opisthoccelous vertebræ, 172.
Opisthocomida, 274, 303.

Opisthocomus, 303 .

- cristatus, 92, 94.

Opisthoprora, 295.
Opisthotic bones, 227.
Oporomis, 285.
Optic nerves and foramen, 182.
Orchesticus, 284.
Orchilus, 291.
Orders of birds enumerated, 258.
Oreicola, 290.
Oreocharis, 286.

Oreocorys, 285.
Oreoica, 287.
Orcomanes, 284.
Oreomyza, 284.
Orconympha, 294.
Oreophasina, 304.
Orcophasis, 304.
Oreopsittacus, 299.
Oreopyra, 294.
Oreoscoptes, 288.
Orcothraupis, 284.
Oreotrochilus, 294.
Organ of hearing, 219 .
-- of smell, 219.
——of song, 211.
-. of tasta, 219.
Organs, non-skeletal, 202 .
Origna, 287.
Orioles, 104, 261.
Oriolide, 261, 28:.
Oriolus, 282.

- galbula, 103, 104.

Ornithion, 291.
Ornitholites, 236.
Ornithological regions of the Earth, 239.
Ortalida, 303.
Orthogonys, 284.
Ortholopilus, 296.
Orthonyx, 288.
Orthotomus, '287.
Ortolan, 105.
Ortygocichla, 289.
Ortygospiza, 283.
Ortyx, 303.
Ortyxclos, 302.
Oryzoborus, 284.
Oscines, 281.
Os hyoides, 187.
Ospreys, 126, 271.
Ossification, process of, 226.

Ostinops, 282.
Ostriches, 65, 281.
Otider, 273, 302.
Otis, 302.
— $\operatorname{tarda}, 47,49$.
Otocompsa, 289.
Otocorys, 285.
Otogyps, 300.
Ovary, 210.

Oren-bird, 118, 263.
Oviduct, 210.
Owl-parrot, 71, 72, 269.

Owls, 129, 271.
Oxpeckers, 112, 113.
Oxylabes, 289.
Oxypogon, 29t.
Oxyrhamphide, 263, 291.

Oxyrhamplues, 291.
Oxyurus, 242.
Oyster-catchers, 55, 56, 275.

Pachycare, 287.
Pachycephala, 287.
Pachycephalince, 287.
Pachycoccyx, 298.
Pachynus, 299.
Pachyrhamphus, 291.
Pagophila, 304.
Palæarctic region, Birds of, 242 .

- - and sub-
regions, 239, 242.
Palceyithatus, 237.
P'alcornis, 299.
-_- torquatus, 269.
Palcornithince, 299.
Palcotringa, 237.
Palamedea, 306.
——cornuta, 45, 47.
Palamedece, 278, 306.
Palamedcide, 279, 306.
Palate, skeleton. of, 185.

Pancreas, 209.
Pandion, 300.

- haliaëtus, 126.

Pandionide, 271,300.
Panoplites, 295.
Pantcrpe, 294.
Panzurus, 286.
Panychlora, 294.
Panyptila, 295.
Papuan subregion, Birds of, 248.
Paradigalla, 282.
Paradisea, 282.
-- apoda, 90 .
Paradiseida, 261, 281.

Paradiseince, 28\%.
Paradisornis, 282.
Paradoxornis, 289.
Pardalotus, 286.
Pareudiastes, 302.
Paride, 262, 286.
Parisoma, 290.
Parmoptila, 286.
Paroaria, 285.
Parotia, 282.
Parra, 304.

- jacana, 62.

Parrida, 276, 304.
Parrots, 71.
--, true, 269.
Parson-bird, 100.
Partridges, 10, 275.
Parts of the body, 150.

- of sternum, 177.

Parula, 285.
Parus, 286.
-britannicus, 102.
-- ccruleus, 102.
Passer, 285.

- domesticus, 105.

Passerculus, 285.
passerella, 285.
Passeres, 131, 260, 281.
Passeriformes, 259, 263, 281.
--, table of its Divisions, 263.
Passerine Birds, 131.
Pastor, 282.

- roseus, 112.

Patagium, 154.
Patagona, 295.
Patagonian subregion,
Biids of, 246 .
Patella, 199.
Pauxi, 303.
Pavo, 5, 303.
Pavorine, 303.
Peacock, 4, 274.
Pecten, 223.
Pectoral limbs, 153.
-- muscles, 203 .
Pedionomus, 302.
Peewits, 59, 275.
P'elargopsis, 296.
Pelecanida, 272, 301.
Pelecaninæ, 301.

Pelecanoides, 304.

- urinatrix, 32.

Pelecanus, 301.

- onocrotalus, 28.

Pelicans, $27,28,272$.
Pellornerm, 289.
Peltops, 290.
Pelvic arch, 194.

- limb-girdle, 194.
- limbs, 158.

Penelope, 303.
Penelopides, 296.
Penelopina, 303.
Penelopince, 303.
Penguins, 22, 279.
Penthetria, 283.
Penthetriopsis, 283.
Pentholea, 288.
Perchers, 131.
Percnostola, 293.
Perdicine, 303.
Perdix, 303.

- cinerea, 10.
- rufa, 10.

Peregrine Falcon, 123.
Pericrocotus, 289.
Perisoreus, 281.
Perissoglossa, 285.
Peristerct, 298.
Pernis, 300.
Perurian subregion,
Birds of, 247.
Pes, 158.
Petasophora, 294.
Petrels, 31, $3 \geq, 276$.
Petrochelidon, 290.
Petreca, 290.
Petronia, 285.
Petrophassa, 298.
Реисеа, 285.
Peисеdramus, 285.
Pezopetes, 284.
Pezophaps solitarius,64.
Peroporus, 300.
Phacelodomus, 292.
Pheochroct, 294.
Pheolcoma, 294.
Pheoptila, 294.
Phcornis, 287.
Phaethornis, 294.
Phaeton, 301.

- athereus, 33.

Phaetontide, 272, 301.
Phainopepla, 287.
Phainoptila, 287.
Phalacrocoracince, 301.
Phalacrocorax, 301.

- carbo, 24.
- graculus, 24.

Phalanges of foot, 200.
-- of pinion, 193.
Phalaropus, 304.
Phaps, 298.
Pharomacrus, 296.
Phasianine, 303.
Phusiunide, 274, 303.
Phasianus, 303 .

- colchicus, 4.
-- reevesii, 4.
Phasidus, 303.
Pheasant Cuckoos, 268.
Pheasants, 4, 274.
Phedina, 290.
Phegornis, 304.
Pheuciicus, 284.
Phibalura, 292.
Philceterus, 283.
Philemon, 286.
Philentoma, 290.
Philepitta, 292.
Philepittide, 263, 292.
Philolemus, 296.
Philydor, 292.
Philydorince, 292.
phlexis, 287.
Phlooocryptes, 292.
Phlogophilus, 294.
Phlogopsis, 293.
Phlogothraupis, 284.
Phodilus, 301.
Phenicocercus, 291.
Phœnicophaës, 298.
Phanicophainida, 268, 298.

Phonicophiline, 284.
Phernicophilus, 284.
Phoenicopteri, 278, 305.
Phenicopteride, 278, 305.

Pheenicopterus, 305.
-- antiquorum, 34,35.
Phoenicothraupis, 284.
Pholidauges, 282.
Pholidornis, 286.

Phonipara, 284.
Phonygama, 282.
Phrygilus, 285.
Phyllergates, 287.
Phyllolais, 287.
Phyllomyias, 291.
Phyllornithidce, 289.
Phylloscartes, 291.
Phylloscopus, 287.
Phyllostrophus, 289.
Phylogeny and Classification, 253.
Physiology, 133.
Physocorax, 281.
Phytotoma, 292.
Phytotomida, 263, 292.
Piaya, 298
Pica, 281.

- pica, 114, 11 万.

Picathartes, 281.
Picida, 267, 297.
Piciformes,265,2(6),296).
Picinæ, 297.
Picoides, 297.
Picolaptes, 292.
Picumnince, 297.
Picumnus, 297.
Picus, 297.

- martius, 70, 71.

Piezorhina, 284.
Piezorhynchus, 290.
Pigeons, 12.

- and Doves, 269.

Pilorhinus, 282.
Pinarochroa, 288.
Pinarocichla, 289.
Pinarolcma, 294.
Pinarolestes, 287.
Pinaroloxias, 286.
Pinaromis, 288.
Pinicola, 285.
Pinion, 154.
-, skeleton of, 193
Pionince, 299.
Pionopsittacus, 299.
Pionus, 299.
Pipile, 303.
Pipilo, 285.
Pipits, 111, 262.
Pipra, 291.

- aurcola, 90, 91.

Pipreola, 292.

Pipridce, 263, 291.
Pipridea, 283.
Piprince, 291.
Piprites, 291.
Pitangus, 291.
Pithys, 293.
Pitta, 292.
-bengalensis, 109, 110.

Pittas, 109, 110.
Pittasoma, 293.
Pittidee, 263, 292.
Pitylince, 284.
Pitylus, 284.
Plantain-eaters, 79, 268.
Plant-cutters, 263.
Platalea, 302.
-leucorodia, 49, 51.
Plataleidee, 273, 302.
Platycercine, 300.
Platycercus, 300.
Platycichla, 288.
Platylophus, 287.
Platyrhynchince, 291.
Platyrhynchus, 291.
Platysmurus, 281.
Platystira, 290.
Plectrophenax, 285.
Plectropterida, 278,305.
Plectropterus, 305.
Plectrorkynchus, 286.
Ploceclla, 283.
Ploceide, 261, 283 .
Ploceince, 283.
Ploceipasser, 283.
Ploceus, 283.
baya, 116.
Plotus, 301 . anhinga, 25,26 .
Plovers, 53, 57, 58, 59, 275.

Plumage, parts of, 144 .
-_- of young, 230 .
Pnoepyga, "288.
Podargides, 265, 295.
Podargus, 295.
Podica, 302.
Podiceps, 305.
--minor, 19, 20.
Pudicipide, 277, 305.
Podilimbus, 305.
Podoces, 281.

Pccilodryas, 290.
Pœcilothraupis, 284.
Pœoccphalus, 299.
Pooptera, 287.
Poephita, 283.
Pogonorhynchus, 297.
Pogonornis, 286.
Pogonotriccus, 291.
Polioactus, 300.
Poliohierax, 300.
Poliolophus, 289.
Poliomyias, 290.
Polioptila, 290.
Poliospiza, 285.
Polyborince, 300.
Polyboroides, 300.
Polyborus, 300.

- tharts, 125.

Polyerata, 294.
Polynesian subregion,
Birds of, 249.
Polyplectron, 303.
-bicalcaratum, 4.
Polytelis, 299.
Polytmus, 294.
Pomarea, 290.
Pomatorhinus, 288.
Poocctes, 285.
Poospiza, 285.
Porphyrio, 302.
Porphyrocephalus, 300.
Porphyrospiza, 285.
Porzanula, 302.
Pratincola, 290.
Pratincoles, 60, 61, 275 .
Primaries, 155.
Prinia, 287.
Prion, 304.
Prionidura, 28. ${ }^{\circ}$.
Prionirhynchus, 296.
Prioniturus, 299.
Prionochilus, 286.
Prionops, 287.
Prionotelus, 296.
Pristorhamphus, 286.
Procarduclis, 285.
Procellaria, 304.

- pelagica, 31.

Procellariidce, 276, 304.
Process of Ossification, 226.

Procnias, 283.

Procriatince, 283.
Procnopis, 283.
Prodotiscus, 297.
Progne, 290.
Promerops, 286.
Prootic bones, 227.
Propyrrhula, 285.
Prosthemadera, 286.
Protonotaria, 285.
Protornis, 237.
Proventriculus, 208.
Prymncacantha, 295.
Psalidoprocne, 290.
Psalidoproonince, 290.
Psaltria, 286.
Psamathia, 287.
Psarisomus, 293.
Psaroglossa, 282.
Psephotus, 300.
Pseudobias, 290.
Pseudochelidon, 287.
Pseudochloris, 285.
Pseudocolaptes, 292.
Pseudocossyphus, 288.
Pseudodacnis, 283.
Pseudogerygone, 290.
Pseudogyps, 300.
Pseudolcistes, 283.
P seudorectes, 287.
Pseudostruthus, 285.
Psendotricous, 291.
Psilopogon, 297.
Psilorhamphus, 293.
Psilorhinus, 281.
Psittacella, 299.
Psittaci, 269, 209.
Psittacide, 269, 299.
Psittacine, 299.
Psittacula, 299.
Psittacus, 299.
-- erithacus, 71.
Psitteuteles, 299.
Psittinus, 299.
Psittirostra, 286.
Psittospiza, 284.
Psophia, 302.
——— crepitans, $44,45$.
Psophiida, 274, 302.
Psophodes, 288.
Pterocles, 299.

- arenarius, 12.

Pterocletes, 268, 299.

Pteroclida, 269, 299. Pyranga, 284.
Pterocnemis, $306 . \quad$ Pyrenestes, 283.
Pteroglossus, 297.
Pterophanes, 294.
Pteropodocys, 289.
Pteroptochide, 263, 293.

Pteroptochus, 293.
Pterorhinus, 288.
Pteruthius, 286.
Pterylx, 165.
Pterylography, 141.
Pterylosis, 141, 164.
Ptilochlorine, 291.
Ptilochloris, 291.
Ptilocichla, 289.
Ptilogonys, 287.
Ptilonopus, 298.
Ptilonorhynchidee, 261, 282.

Ptilonorhynchus, 282.

- violaceus, 93, 95.

Ptilopyga, 289.
Ptilorkis, 281.
Ptilosclera, 299.
Ptilotis, 286.
Ptistes, 299.
Ptochoptera, 295.
Ptyrticus, 289.
Pubis, 196.
Pucrasia, 303.
Puff-birds, 74, 267.
Puffins, 23, 25, 277.
Puffinus, 304.
Pulmonary arteries, 216, 22e6.
Pycnonotide, 262, 289.

Pycnonotus, 259.
-hæmorrhous, 117.
Pycnoptilus, 288.
Pycnopygius, 286.
Pycnorhamphus, 284.
Pyctorkis, 289.
Pygarrhicus, 292.
Pygmornis, 294.
Pygopodes, 277, 305.
Pygopodiformes, ${ }_{2} 76$, 305.

Pygoptila, 203.
Pygostyle, 175, 195.
Pylorus, 208.

Pyrgisoma, 285.
Pyriglena, 293.
Pyrocephalus, 291 .
Pyroderus, 292.
Pyromelana, 283.
Pyrrhocheira, 289.
P'yrrhocoma, 284.
Pyrrhocorax, 281.
Pymhoplectes, 285.
Pyrrhospiza, 285.
Pyrrhula, 285.
Pyrrhulauda, 285.
Pyrrhulopsis, 299.
Pyrrhulorhyncha, 285.
Pyrrhuloxia, 284.
Pyrrhuphonia, 283.
Pyrrtura, 299.
Pytclia, 283.
Quails, 10, 11, 275.
Quelea, 283.
Querquedula, 305.
Querula, 292.
Quiscalince, 283.
Quiscalus, 283.
Radius, 191.
Rails, 17, 63, 274.
Rallide, 274, 302.
Rallina, 302.
Ralline, 302.
Rallus, 302.

- aquaticus, 17.

Raptores, 269, 270, 300.
Raptorial birds, 131.

- foot, 164.

Rasorial foot, 164.
Ratite, 258, 280, 306.
Razor-bill, 22, 277.
Rectes, 287.
Rectrices, 151.
Recurvirostra, 304 .
-arocetta, 56, 58.
Redshanks, 54 .
Reed Bunting, 105.
Regions of the body, 150 .

- (ornithological)
of the Earth, 239.
Regulide, 262, 286.
Regulus, 286.

Regulus cristatus, $97 . \quad$ Rhynchops, 304.
Remiges, 154.
Resemblances, deep and superficial, 25 t.
Respiratory system,210.
Rhamphastide,,267,297.
Rhamphastos, 297.
-- toco, 74.
Rhamphoc®nus, 293.
Rhamphocharis, 286.
Rhamphocinclus, 288.
Rhamphococcyx, 298.
Rhamphoccelus, 284.
Rhamphocorys, 285.
Rhamphodon, 294.
Rhamphomantis, 298.
Rhamphomicron, 295.
Rhaphidura, 295.
Rhea, 65, 306.
-_ americana, 65, 66.
Rheas, 281.
Rhinochetider, $\quad 273$, 302.

Rhinochetus, 302.

- jubatus, 46, 48.

Rhinocichla, 289.
Rhinococcyx, 298.
Rhinocorax, 281.
Rhinocrypta, 293.
Rhinogryphus, 301.
Rhinomyias, 290.
Rhinoplax, 296.
Rhinopomastur, 296.
Rhinortha, 298.
Rhipidomis, 282 .
Rhipidura, 290.
Rhodinocichila, 288.
Rhodopechys, 285.
Rhodopis, 295.
Rhodospingus, 285.
Rhodospiza, 285.
Rhopocichla, 289.
Rhopodytes, 298.
Rhopophilus, 287.
Rhopoterpe, 293.
Rhynchea, 301.
Rhynchocyclus, 291.
Rhynchopsittacus, 299.
Rhynchostruthus, 285.
Rhynchotus, 306 .
Rhyncophanes, 285.
Rhyncopine, 304.

- nigra, 30.

Rhytidoccros, 296.
Ribs, 175.
Rimator. 289.
Rissa, 304.
Robber-gulls, 30, 276.
Rock-pigeon, 13.
Rollers, $93,94,96$, 265.

Rollutina, 303.
Rollulus, 303.
Rook, 115.
Rooks of different ages, 235.

Rose-coloured Pastor, 112.

Rose-ringed Parrakeet, 269.

Rostrhamus, 300.
Rubigula, 289.
Ruff, 55.
Ruffs, 53, 275.
Rupicola, 291.

- crocea, 91.

Rupicolince, 291.
Ruticilla, 288.
Sacral vertebre, 172.
Sacrum, 173.
Salivary glands, 207.
Salpinctes, 288 .
Salpornis, 286.
Saltator, 284.
Saltatricula, 285.
Sanderling, 54.
Sand-grouse, 11, 12.
Sandpipers, 53, 54, 275.
Sandwich Island Honey-eaters, 262.
Sapheopipo, 297.
Sappho, 294.
Sarcophanops, 293.
Sarcops, 28:.
Sarcorkamphide, 271, 301.

Sarcorhamphus, 301.

- gryphus, 128.

Sarkidiornis, 305.
Sasia, 297.
Scuromarptis, 296.
Saurothera, 298.

Saxicola, 288.

- enanthe, 108.

Sayornis, 190 .
Sccoorhynchus, 289.
Scansores, 265, 266, 297.

Scansorial Birds, 131.

- foot, 164.

Scapula, 189.
Scapular arch, 188.
Scapulars, 150.
Sceloglaux, 301.
Schiffornis, 291 .
Schistes, 294.
Schistochlamys, 284.
Schistospiza, 285.
Schizacaca, 292.
Schizognathons structure, 185.
Schizorhinal structure, 181.

Schizorhis, 298.
Schlegelia, 282.
Schoenicola, 287.
Scissirostrum, 282.
Scissor-bills, 30.
Sclerurine, 292.
Sclerurus, 292.
Scolecophagus, 283.
Scolopax, 304.

- rusticola, 53, 54.

Scopide, 272, 301.
Scopince, 301.
Scops, 301.

- give, 130.

Scoptelus, 296.
Scopus, 301.

- - umbretta, $39,40$.

Scotornis, 295.
Scotocerca, 287.
Scotocichla, 289.
Scotopelia, 301.
Scratchers, 67.
Screamers, horned, 279.
Scrub-birds, 263.
Scutellation of tarsus, 162.

Scytalopus, 293.
Scythrops, 298.
Sea-dove, 22.
Sea-parrot, 23.
Secondaries, 156.

Secretary-bird, 129, 271.

Sedge-warblers, 107.
Seebohm'sclassification, 255.

Selasphorus, 295.
Selenidera, 297.
Seleucides, 281.
Semioptera, 282.
Sense of touch, 219.
——, organs of, 217.
Sericornis, 287.
Scricossypha, 284.
Sericulas, 282.
Seriema, 44, 46.
Serilophus, 293.
Serinus, 285.
Serpentarii, 269, 270, 301.

Serphophaga, 291.
Setophaga, 285.
Shag, 24.
Shapes of eggs, 228.

- of nests, 231 .

Sharp-bills; 262.
Sheath-bills, 59,61 , 275.

Shoe-bill, 38, 39, 272.
Shoulder-girdle, 188.
Shrikes, 119, 262.
Sialia, 288.
Sibia, 288.
Sigmodus, 287.
Simorhynchide, 277, 305.

Simorhynchus, 305.
Singing-organ, 211.
Sinus rhomboidalis, 219.

Siphia, 290.
Siptornis, 292.
Sirystes, 291.
Sisopygis, 290.
Sisura, 290.
Sitagra, 283.
Sitta, 286.

- сеsia, 97, 98.

Sittclla, 286.
Sittine, 286.
Sittiparus, 289.
Sittosomus, 292.
Siurus, 285.

Siva, 289.
Size of eggs, 228.
Skeleton, internal, 16%.
-- of the leg, 196.

- of lower jaw, 186.
- of pinion, 192.
-_ of wing, 190.
Skimmers, 30, 276.
Skin structure, 135.
-. of tarsus and digits, 162 .
Skuas, $30,276$.
Skull, 179.
Smaragdochrysis, 295.
Smicrornis, 290.
Smilorhis, 297.
Smithomis, 290.
Snipes, 53, 275.
Soft-plumed
Cuckoos, 268.
Solan Goose, 25.
Solitaire, 64, 238 .
Somateria, 305.
South-African subre-
gion, Birds of, 243 .
Sparrow, 105.
Sparrow-hawk, 123.
Spathura, 295.
Spatula, 305.
Spelaomis, 288.
Speotyto, 301.
Spermestes, 283.
Spermophila, 284.
Spermospiza, 283.
Sphecotheres, 282.
Spheniseus, 306.
Sphenocichla, 288.
Sphenœacus, 287.
Sphenoproctus, 294.
Sphenostoma, 286 .
Sphenzera, 287.
Sphyropicus, 297.
Spilocorydon, 285.
Spiloptila, 287.
Spilomis, 300.
Spinal column, 169.
- cord, 219.

Spindalis, 284.
Spiza, 285.
Spizaetus, 300.

Spizalauda, 285.
Spizella, 285.
Spiziapteryx, 300.
Spiziastur, 300.
Spizixus, 289.
Spizocorys, 285.
Spleen, 209.
Spodiopsar, 282.
Spodiornis, 285.
Spoonbill, 49, 51, 273.
Sporadinus, 294.
Sporcginthus, 283.
Sporopipes, 283.
Spreo, 282.
Spurious wing, 154.
Spurs, 164.
Stachyridopsis, 289.
Stachyris, 289.
Stactocichla, 289.
Stactolema, 297.
Staganopleura, 283.
Stalkers, 68.
Staphidia, 289.
Starlings, 111, 261.
Starncenas, 298.
Steatornis, 295.
——caripensis, 122, 12:)

- syrinx of, 214.

Steatornithide, 265, 295.

Steganolama, 303.
Steganopodes, 272, 301.
Steganura, 283.
Stelgidopteryx, 290.
Stelleria, 305.
Stellula, 295.
Stenostira, 290.
Stephanophorus, 283.
Stercorarionce, 304 .
Stercorarius, 304.

- catarrhactes, 30).

Sterna, 304.

- fluriatilis, 20, 30.
- macrura, 29, 30.

Sterual ribs, 176.
Sternide, 276, 304.
Sternince, 304.
Sternoclyta, 294.
Sternum, 177.
Stictoptera, 283.
Stictospiza, 283.

Stigmatura, 291.
Stilts, 56, 57, 275.
Stints, $54,275$.
Stiphrornis, 287.
Stipiturus, 287.
Stomach, 208.
Stone - curlews or
Stone-plovers, 59, (60.

Stoparola, 290.
Storks, 41, 272.
Strata, geological, 235.
Strepera, 281.
Strepsilas, 304.
-interpres, 57.
Streptocitta, 282.
Striges, 260, 271, 301.

Strigidre, 301.
Stringopidee, 269, 300.

Stringops, 300.
-habroptilus, 71, 72.
Strix, 301 .

- Alammea, 129.

Structure of bony palate, 185.

- of ear, 220 .
- of egg, 224 .
- of eye, 220 .
- of feathers, 137, 139.
Struthidec, 281.
Struthio, 30 .
-- camelus, 65.
Struthiones, 280, 306.

Struthionidee, 280, 281, 306.
Sturnella, 283.
Sturnelline, 283.
Sturnia, 282.
Stumide, 261, 28:.
Sturnopastor, 282.
Sternomis, 282.
Sturnus, 28.
-unilgaris, 111.
Subclasses of Birds, 258.

Subclavian arteries, 217, 226.
Sublegatus, 291.

Sula, 301.
-bassana, 25, 27.
Sun-birds, 101, 262.
Sun-bittern, 37, 273.
Suprarenal capsules, 209.

Surnia, 301.
Surriculus, 298.
Suthora, 289.
Sutoria, 287.
Suya, 287.
Swallows, 96, 97.

- and Martins, 262.

Swallow-shrikes, 262 .
Swans, 15, 278.
Swifts, $96,265$.
Swimmers, 68.
Sycalis, 285.
Sycobrotus, 283.
Sylvia, 287.
-atricapilla, 106, 107.

Sylviella, 287.
Sylviida, 262,287 .
Sylviinas, 287.
Sylviorthorhynchus, 292.

Syma, 296.
Symmorphus, 289.
Symallaxince, 292.
Synallaxis, 292.
Syxins, 211.
Syıniina, 301.
Syrnium, 301.
-aluco, 130.
Syrrhaptes, 299.

- paradoxus, 12.

Table of Groups of Passeriformes, 263 .
Tассосиs, 298.
Tachycineta, 200.
Tachypetes, 301.

- aquila, 32.

Tachypetide, 27コ, 301.
Tachyphonus, 284.
Tachytriorchis, 300.
Tadorna, 305.
Tenioptera, 290.
Teniopterina, 290.
Teniopygia, 283.
Tail, 150.

Talegallus, 304.
Tanagers, 102, 261.
Tanagra, 284.

- episcopus, 102.

Tanagrella, 283.
Tanagride, 261, 283.
Tanagrine, 283.
Tantalus, 302.
Tanygnathus, $\because 99$.
Tanysiptera, 296.
Taoniscus, 306.
Tapaculos, 263.
Tarsiger, 290.
Tarso-metatarsus, 199.
Tarsus, 158.
Tatare, 289.
Tattlers, 54.
Tectonornis, 282.
Teleophonus, 286.
Telespiza, 285.
I'elmatobius, 237.
Temenuchus, 282.
Temmurus, 281.
Tenuirostral birds, 132.

Tephrocorys, 285.
Tephrodornis, 287.
Tercnura, 293.
Teretistris, 285.
Terns, 29, 276.
Terpsiphone, 290.
Tertials, 156.
Tertiaries, 156.
Testes, 209.
Tetrenura, 283.
Tetragonops, 297.
Tetrao, 303.

- urogallus, 10.

Tetrcogallus, 303.
Tetraonide, 275, 303.
Tetraonince, 303.
Tetraophasis, 303.
Textor, 283.
Thalassornis, 305.
Thalurania, 294.
Thamnistes, 293.
Thamnobia, 288.
Thamnobiine, 288.
Thamnocharis, 293.
Thamnolea, 288.
Thamnomanes, 293.
Thamnophilince, 293.

ALPHABETICAX INDEX.

Thamnophilus, 293.
Thamnomies, 287.
Thaumalea, 303.
——amherstice. 4.
Thaumastura, $29 \overline{3}$.
Thick-knees, $59, \geq 75$.
Thinocorles, 304 .
Thlypopsis, 28 t.
Thoracic limb-girdle, 188.
-region of skeleton, 17.

Thorax, 175.
Thrasactus, 300.
Threnetes, 294.
Thringorhina, 289.
Thripadectes, 299.
Thripias, 297.
Thriponax, 297.
Thripophaga, 292.
Thrushes, 107, 108, 262.

Thryophilus, 288.
Thryothorus, 288.
Tiaris, 285.
Tibia, 199.
Tichodroma, 286.
Tiga, 297.
Tigrisoma, 301.
тіјиса, 292.
Tilmatura, 295.
Tilt-tails, 263.
Timelia, 289.

- pileata, 117.

Timeliide, 262, 288.
Timeliince, 289.
Tinamide, $280,306$.
Tinamince, 306.
Tinamotine, 306.
Tinamotis, 306.
Tinamous, 49, 51, 280.
'İnamus, 306.
-... robustus, 49, 51.
Titmice, 262.
Tits, 101, 26^{2}.
Tityra, 291.
Tityrince, 291.
Imetotrogon, 296.
Todide, 265, 296.
Todies, $32,265$.
Todirhamphus, 296.
Todirostrum, 291.

Todopsis, 290.
Todus, 296.

- viridis, $81,82$.

Toes, 159.
Tongue, 207.
Tooth-billed Pigeon, 13, 14, 269.
Topaza, 294.
Totanus, 304.

- calidris, 54.

Toucans, 73, 74, 267.
Touch, sense of, 219.
Trachea, 210.
Tracheophona, 262, 263, 292.

Tracheophonal structure, 214.
Trachycomus, 289.
Trachyphonus, 297.
Tragopan, 303.
Tragopans, 5, 275.
Tree-starlings, 261.
Treron, 298.
Treronine, 298.
Tribonyx, 302.
Trichixus, 288.
Trichocichla, 289.
Trichoglossus, 299.
Tricholema, 297.
Tricholestes, 289.
Trichophoropsis, 289.
Trichostoma, 289.
Trichothraupis, 28+.
Triclaria, 299.
Tringa, 304.

- minuta, 54.

Triptorhinus, 293.
Trochalopterum, 288.
Trochili, 260, 264, 294.
-intermedii, 294.

- lerirostres, 294.
- serrirostres, 294.

Trochilide, 264, 294.
Trochiline, 294.
Trochilus, 295.
-- colubris, 100.
Trochocercus, 290.
Troglodytes, 288.
Troglodytida, 262, 288.

Trogon, 296.

Trogon macrurus, 88, 89.

Trogones, 265, 266, 296.

Trogonide, 267, 296.
Trogons, 88, 89, 267.
Tropic-birds, 33, 272.
True Parrots, 269.
True sacral vertebro, 173.

Trugon, 298.
Trumpeters, 44, 274.
Trupialis, 283.
Trypanocorax, 281.
-frugilegus, 115.
Tubinares, 276, 304.
Turacus, 298.
Turdide, 262, 288.
Turdince, 288.
Turdinulus, 289.
Turdinus, 289.
Turdus, 288.

- musicus, 107, 108.

Turkeys, 7, 275.
Tumagra, 288.
Turnicide, 273, 302.
Turnix, 302.

- sylvatica, 11.
- taigoor, 11.

Turnstones, 53, 57, 276.

Turtur, 298.
Tylas, 289.
Typical vertebre, 169.
Tyrannide, $263,290$.
Tyrannine, 291.
Tyrannisens, 291.
Tyrannulus, 291.
Tyrannus, 291.

- carolinensis, 118, 120.

Tyrant-birds, 263.
Uintornis, 237.
Ulna, 191.
Umbrella-bird, 91, 92, 263.

Umbrette, 39.
Upucerthia, 292.
Uрира, 296.

- ерорs, 86, 87.

Чрире, $265,266,296$.

Úpupitac, 267, 296.
Uiagus, 985.
Uranornis, 282.
Ureters, 209.
Uria, 305.

- troile, 21.

Uriade, 277, 305.
Urinary system, 209 .
Uroastus, 300 .
Urobrachya, 283.
Uro-caudal rertebre, 174.

Urocharis, 286.
Urochroa, 294
Urochroma, 299.
Urocichla, 288.
Urocissa, 281.
--. erythrorhynchus, 115.

Urococcyx, 298.
Urocynchramus, 285.
Urodynamis, 298.
Urogalba, 297.
Uroleuca, 281.
Uroloncha, 283.
Uropsila, 288.
Urospatha, 296.
Urospizias, 300.
Urasticte, 294.
UTothrexpisis, 284.
Urotriorchis, 300
Urubitinga, 300.
Vanellus, 304.

- cristatus, 59.

Vanga, 286.
Vasa deferentia, 209.
Ventricles, 219.
Verreauxia, 297.
Vertebre, type of, 169.
-... categories of, 170.
Vertebral arteries, 217, 226.

- column, 169 .
- ribs, 175.

Testiaria, 284.
Vidua, 283.
Viduince, 283.

Vini, 299.
Vireo, 287.
Jireotanines, 287.
Tireonidce, 262, 287.
Virginia Nightingale, 105.

Visceral clefts and arches, 225.
Tolatinia, 284.
I'ultur, 30e.

- monachus, 127.

Vultures, 127, 271.
Trulturide, 271, 300.
Waders, 68.
Wagtails, 111, 262.
Wallets, 54 .
Warblers, 107, 262.
Water-rail, 17.
Wattled Ant-thrushes, 263.

Waxwing, 106, 262.
Weaver-birds, 115, 261.

Weka Rail, 63.
West - African subregion, Birds of, 243.
Wheatear, 108.
Whimbrel, 52 .
White-eyes, 262.
Windpipe, 210.
Wing-bones, articulations of, 194.
Wings, 153.
-, muscles of, 203.
---, skeleton of, 190.
Woodcocke, 53, 275.
Woodhewers, 117, 119, 263.

Wood-hoopoes, 87, 88, 89.

Woodpeckers, 71.
—_and Wrynecks, 267.

Wood-stork, 43, 272.
Wood-swallows, 262.
Wood-wren, 107.
Wrens, 96, 98, 262.

Wrens, Nens-Zealanct. 263.

Wrynecks and Woodpeckers, 207.

Xanthocephatus, 28:3.
Xunthocorys, 23.5.
Xantholcema, 297.
Xunthomelus, 282.
Xanthomixis, 289.
Xanthopygia, 290.
Xanthura, 281.
Xema, 304.
Xenerpestes, 292.
Xenicide, 263, 292.
Xenicus, 292.
Xenocichla, 289.
Xenodacnis, 284.
Xenopicus, 297.
Xenopipo, 291.
Xenopirostris, 286.
Xenops, 292.
Xenospingus, 285.
Xerophila, 286.
Xiphidiopicus, 297.
Xiphocolaptes, 2 gy.
Xipholena, 292.
Xiphorhamphus, 289.
Xiphorhynchus, 29. .
Young, condition of plumage, 230.
Yuhina, 289.
Zanclostomus, 298.
Zeledonia, 293.
Zenaida, 298.
Zeocephus, 290.
Zodalia, 294.
Zonceyinthus, 28:3.
Zonogastris, 283.
Zonotrichia, 285.
Zoological classification, 1, 252.

- nomenclature, 4.

Zostcropide, 262, 286.
Zosterops, 286.
Zygodactyle foot, 164 .

[^0]: * All animals taken together are spoken of as the Animal Kingdom in contrast and distinction to the Tegetable Kingdom, which iucludes all plants.
 \dagger In Chapter V. we shall see that this was not always the case.

[^1]: = See a note br Mr. Whitehead in 'The Ibis' for 1888, p. 411.

[^2]: * Thousands breed at St. Kilda.

[^3]: "trmerm.

[^4]:
 the Hall of thes Nintumal Hintrory Musorntm.

[^5]: * See above, p. 19.
 \dagger See abore, p. 22.

[^6]: * See ante, p. 79.

[^7]: * See ante, p. 67.

[^8]: * See below, p. 144.

[^9]: * See below, p. 208.

[^10]: * See ante, pp. 86, 87.

[^11]: * I am indebted to Mr. secholnm, F.L.s., for a knowledere wi these two examples.
 + See below, p. 164.
 + The maxillat and manlible are very oiten called the upper and lower mandibles.

[^12]: * Sec ante, p. 100.
 \ddagger See ante, p. 31.
 1 See ante, p. 58.
 § See ante, p. 25.

[^13]: * See below, p. 165, fig. 147, 2.

[^14]: * The genera Ceys and Alcyone.

[^15]: * In sume of those which hare abnormally dereloped feathers, technically called "boots." See below, p. 162.

[^16]: * See ante. p. 141s

[^17]: * Every different kind of substance of which the liring body is cowposed (e.g. bone, gristle, muscle, fat, \&c.) is called a "tissue."
 + For the "jugal" see below, p. 180.

[^18]: * So called because it answers to the parts which form the skeleton of our chest or "thorax."

[^19]: * See ante, p. 148.

[^20]: * So called because these rertebrie seem to answer to those rertebree of man and other mammals which are termed " lumbar," and are the vertebre which come between their dorsal vertebros and their sacrum.

[^21]: * A suture is a line indicating the junction of tro bones by a more or pese extended apposition of their edges instead of by any other hend of joint

[^22]: * See below, p. 195, fig. 157, py.

[^23]: * See ante, p. 94 .

[^24]: * Their distimetness and the essential distinetness of different parts of the ronf and other portions of the skull is known from their separate oondition in the skulls of very young bieds and of other animals.

[^25]: * See below, p. 217.

[^26]: * See ante, p. 168 .

[^27]: * See ante, p. 154.
 \dagger The wing being supposed to be completely extendect.

[^28]: * Seo ante, p. 192.
 + This is comparable with the "cannon-bone" of an ox, which is not essentially a single home, but consista of two metatarsals anchelosed thenether.
 \ddagger See below, p. 206.
 § See ante, p. 193.
 || See ante, p. 159.
 - See ante, p. 164.

[^29]: * See ante, p. 200.
 \dagger See ante, p. 183.

[^30]: * See ante, p. 187.

[^31]: * See ante, p. 174.

[^32]: * See ante, p. $167 . \quad+$ See ante, p. 176.

[^33]: * John Hunter tied the windpipe of a fowl and then divided the humerus, and he found that it breathed through the aperture in that bone.

[^34]: * See ante, p. 171.

[^35]: * See ante, p. 183. \dagger See ante, p. 146.

[^36]: * See ante, p, 182, and below, p. 227.

[^37]: * See ante, p. 182. + See ante, p. 142.

[^38]: * A term proposed by Mohl to denote the soft interior of cells. It is a soft, viseid, twasparent, colourless suhstance, easily decomposable. It is resulvable into oxygen, hydrogen, nitrogen, and carbon, aud with traces of some other chemical elements.

[^39]: * See ante, p. 175.

[^40]: * Probably answering to the maymum and unciform bones of man and heasts, as well as the scapho-lunar and cuneiform bones. There is also sometimes a fifth carpal ossicle, which afterwards anchyloses with the metaearpus, as also do the representatives of the mumum and unciforme. It has been termed the pentosteon.
 + This proximal element consisis at first of two distinct parts, which, as they lie beneath the ends of the two leg-bones, may be distinguished as the tibiale and the fibulare respectively.

[^41]: * See 'The Ibis,' 1860, p. 74.

[^42]: * See ante, p. 9.
 \dagger See ante, p. 140.

[^43]: * Ency. Brit., Article "Birds," p. 7660.
 t See P'alaten's ' On Felarnes flyttingsrägar' (Helsiugfors, 1stt).

[^44]: * See Quart. Journ. Geol. Soc. xxix. p. 511.

[^45]: * See ante, p. 64.
 \uparrow See ante, p. 22.

[^46]: * This line passes between the islands of Bali and Lombock.

[^47]: * See ante, r. 39.

 1 Many West-African forms range across the Lake Country; but there are many peculiar Touramos, as well as Weaver-bides, Starlings, ife. Many South- Ifrican birds range interthis reginn, and many N.E. Africau birds descend into it.

[^48]: * Other extinct forms from this subregion have been already noticed; see ante, p. 238.

[^49]: * See ante, p. 48.

 中 see ante, p. 9. One rpecies has monsed the Straits between Ball and Lombock, and so just entered the Indian region.
 \ddagger They appear in the Thilippine Islands and North-western loorneo, as well as in the Nicobar Islands.

[^50]: * There is a Jungle-fuwl in Celebes, which was perhaps introduced by man.
 \dagger By the late Lord Tweeddale, long known as Lord Walden.

[^51]: ${ }^{1}$ See ante，p． 3.

[^52]: ${ }^{1}$ See ante, p. $1 . \quad 2$ See ante, pp. $67 \& 131$.
 ${ }^{3}$ In the 'Systema Naturx,' 1766 , tomus i.
 ${ }^{4}$ See ante, p. 132.

[^53]: ${ }^{1}$ Proc. Zool. Soc. 1866.
 ${ }^{2}$ P. Z. S. 1867.
 3 'Methodi Naturalis Avium Disponendarun 'Tentanen,' Stockhohn, 1879.
 ${ }^{4}$ P. Z. S. 1873 and 1874. ${ }^{5}$ Ibis, 1880.
 "Eney. Brit., Art. "Ornithology" (wherein a full and admirable aceonnt of the history of the scienceand of the works of its promuters is to be found).
 ${ }^{7}$ Die Vögel d. Zoolog. Gärten, 1852.
 ${ }^{8}$ Standard Nat. Hist., Aves, 1885.
 ${ }^{9}$ Morphologie u. System. der Vögel, 1888.
 10 'Classification of Birds,' R. H. Porter, 1890.
 ${ }^{11}$ I'. Z. S. 1R8!, and Brom's Thierreich, Ares, 1890. Also a maper read before the Zonlogical Society while these pages were being revined fur press -March, 1892.

 12 'A Review of recent attempts to classify Birds,' 1891.
 ${ }^{13}$ By which character Birds differ from man and beasts, where there are two occipital condyles.

[^54]: The Parot Stingons, the Rail-like bird Notomis, and the Moatzin, Opisthocomus, are the only exceptious.

[^55]: ${ }^{2}$ See ante, p. $131 . \quad{ }^{2}$ See ante, p. 77.
 ${ }^{3}$ Thickly corered with down only in the Lyre-bird (Menura).

[^56]: ${ }^{2}$ See ante, p. 205.
 ${ }^{2}$ See ante, p. 186.
 ${ }^{3}$ See ante, p. 181.
 ${ }^{4}$ See ante, p. 171.

[^57]: ${ }^{1}$ Page 214.
 ${ }^{3}$ P. 105.
 ${ }^{4}$ P. 109. ${ }_{5}$ P. 111.

[^58]: ${ }^{1}$ P. 124.
 ${ }^{3}$ P. 129.
 ${ }^{2}$ P. 127.
 ${ }^{4}$ P. 130.

[^59]: ${ }^{1}$ P. $51 .{ }^{2}$ The characters of this Subclass are given above, p. 258.
 ${ }^{3}$ P. 64 . ${ }^{4}$ P. 67.

